• Title/Summary/Keyword: concrete strength prediction

Search Result 725, Processing Time 0.023 seconds

A predictive model for compressive strength of waste LCD glass concrete by nonlinear-multivariate regression

  • Wang, C.C.;Chen, T.T.;Wang, H.Y.;Huang, Chi
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.531-545
    • /
    • 2014
  • The purpose of this paper is to develop a prediction model for the compressive strength of waste LCD glass applied in concrete by analyzing a series of laboratory test results, which were obtained in our previous study. The hyperbolic function was used to perform the nonlinear-multivariate regression analysis of the compressive strength prediction model with the following parameters: water-binder ratio w/b, curing age t, and waste glass content G. According to the relative regression analysis, the compressive strength prediction model is developed. The calculated results are in accord with the laboratory measured data, which are the concrete compressive strengths of different mix proportions. In addition, a coefficient of determination $R^2$ value between 0.93 and 0.96 and a mean absolute percentage error MAPE between 5.4% and 8.4% were obtained by regression analysis using the predicted compressive analysis value, and the test results are also excellent. Therefore, the predicted results for compressive strength are highly accurate for waste LCD glass applied in concrete. Additionally, this predicted model exhibits a good predictive capacity when employed to calculate the compressive strength of washed glass sand concrete.

Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets

  • Wu, Han-Liang;Wang, Yuan-Feng
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.501-516
    • /
    • 2010
  • This paper is aiming to study the performances of reinforced high-strength concrete (HSC) short columns confined with aramid fibre-reinforced polymer (AFRP) sheets. An experimental program, which involved 45 confined columns and nine unconfined columns, was carried out in this study. All the columns were circular in cross section and tested under axial compressive load. The considered parameters included the concrete strength, amount of AFRP layers, and ratio of hoop reinforcements. Based on the experimental results, a prediction model for the axial stress-strain curves of the confined columns was proposed. It was observed from the experiment that there was a great increment in the compressive strength of the columns when the amount of AFRP layers increases, similar as the ultimate strain. However, these increments were reduced as the concrete strength increasing. Comparisons with other existing prediction models present that the proposed model can provide more accurate predictions.

Compressive strength prediction of limestone filler concrete using artificial neural networks

  • Ayat, Hocine;Kellouche, Yasmina;Ghrici, Mohamed;Boukhatem, Bakhta
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.289-302
    • /
    • 2018
  • The use of optimum content of supplementary cementing materials (SCMs) such as limestone filler (LF) to blend with Portland cement has been resulted in many environmental and technical advantages, such as increase in physical properties, enhancement of sustainability in concrete industry and reducing $CO_2$ emission are well known. Artificial neural networks (ANNs) have been already applied in civil engineering to solve a wide variety of problems such as the prediction of concrete compressive strength. The feed forward back propagation (FFBP) algorithm and Tan-sigmoid transfer function were used for the ANNs training in this study. The training, testing and validation of data during the backpropagation training process yielded good correlations exceeding 97%. A parametric study was conducted to study the sensitivity of the developed model to certain essential parameters affecting the compressive strength of concrete. The effects and benefits of limestone filler on hardened properties of the concrete such as compressive strength were well established endorsing previous results in the literature. The results of this study revealed that the proposed ANNs model showed a high performance as a feasible and highly efficient tool for simulating the LF concrete compressive strength prediction.

An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming

  • Castelli, Mauro;Trujillo, Leonardo;Goncalves, Ivo;Popovic, Ales
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.651-658
    • /
    • 2017
  • High-performance concrete, besides aggregate, cement, and water, incorporates supplementary cementitious materials, such as fly ash and blast furnace slag, and chemical admixture, such as superplasticizer. Hence, it is a highly complex material and modeling its behavior represents a difficult task. This paper presents an evolutionary system for the prediction of high performance concrete strength. The proposed framework blends a recently developed version of genetic programming with a local search method. The resulting system enables us to build a model that produces an accurate estimation of the considered parameter. Experimental results show the suitability of the proposed system for the prediction of concrete strength. The proposed method produces a lower error with respect to the state-of-the art technique. The paper provides two contributions: from the point of view of the high performance concrete strength prediction, a system able to outperform existing state-of-the-art techniques is defined; from the machine learning perspective, this case study shows that including a local searcher in the geometric semantic genetic programming system can speed up the convergence of the search process.

Prediction of Compressive Strength of Concrete using Probabilistic Neural Networks (확률 신경망이론을 사용한 콘크리트 압축강도 추정)

  • 김두기;이종재;장성규;임병용
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.311-316
    • /
    • 2003
  • The compressive strength of concrete is a criterion to produce concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of Concrete at the Construction site. Therefore, strength prediction before the placement of concrete is highly desirable. This study presents the probabilistic technique for predicting the compressive strength of concrete on the basis of concrete mix proportions. The estimation of the strength is based on the probabilistic neural network, and show that the present methods are very efficient and reasonable in predicting the compressive strength of concrete probabilistically.

  • PDF

An Experimental Study on the Prediction of Concrete Compressive Strength by the Maturity Method Using Embedded Wireless Temperature and Humidity Sensor (콘크리트 매립형 무선 온습도 센서 기반 적산온도법을 이용한 콘크리트 압축강도 예측에 관한 실험적 연구)

  • Mun, Dong-Hwan;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.94-95
    • /
    • 2018
  • Prediction of compressive strength of concrete by Maturity Method is applied in construction site. However, due to the use of wired type high-priced equipment, economic efficiency and workability are falling. In this study, a newly developed concrete embedded wireless sensor is used to perform a mock-up test. Next, the concrete compressive strength of the Maturity Method is predicted using Saul and Plowman's function as measured temperature data. The predicted concrete strength at the beginning of the age was the actual strength and stiffness, but the error rate was less than 1% at 28th day.

  • PDF

Prediction of Compressive Strength Using Setting Time and Apparent Activation Energy of Blast Furnace Slag Concrete (응결시간과 겉보기 활성화 에너지를 이용한 고로슬래그 콘크리트의 압축강도 예측에 관한 연구)

  • Kim, Han-Sol;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.101-102
    • /
    • 2021
  • The compressive strength of concrete is greatly affected by the temperature inside the concrete at the initial age immediately after pouring. The apparent activation energy of cement and the setting time of concrete are major factors influencing the development of compressive strength of concrete. This study measured the apparent activation energy and setting time according to the change in W/B for each mixing rate of Ground Granulated Blast-Furnace Slag (GGBFS). And after calculating the compressive strength prediction model, the accuracy of the prediction model was evaluated by comparing the predicted compressive strength and the compressive strength.

  • PDF

Construction of Prediction Model Formula of Chloride Diffusion Coefficient Considering Water-Cement Ratio and Compressive Strength of Different Mix Conditions (배합조건이 다른 콘크리트의 물 시멘트비와 압축강도를 고려한 염화물 확산계수 예측모델식 구성)

  • Lee, Taek-Woo;Park, Seong-Bum;Yoon, Eui-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.185-188
    • /
    • 2005
  • This study selected three different specified concrete strength types of mixture which were applied to domestic seawater concrete structure and measured compressive strength and chloride diffusion coefficient and composed the formula of prediction model of chloride diffusion coefficient in order to provide the useful data for concrete mix decision of seawater structures. As a result, the formula of prediction model of chloride diffusion coefficient which set W/C and compressive strength as parameters and performed multiplex regression analysis which was based on the mathematical theory was confirmed more reliable than the formula of prediction which was composed existing water-cement ratio function.

  • PDF

An Experimental Study on the Compressive Strength Prediction of High-Strength Concrete by Maturity (적산온도에 의한 고강도콘크리트의 압축강도 예측에 관한 실험적 연구)

  • 길배수;조민형;전진환;남재현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.225-231
    • /
    • 1996
  • Prediction of the early-stage strength of concrete is useful for modernized concrete construction. An experiment was attempted on the high-strength of concrete produced by ordinary portland cement under the curing temperatures of 30, 20, $10^{\cire}C$ and the various mixing proportions such as water-binder ratio of 0.30, 0.35 and silica fume content of 10% by weight of cement. It is the aim of this study to investigare and compare the development of concrete strength with maturity and analyze the application of Maturity as a parameter to correlation estimate test results of concrete. They are statistically analyzed to infer the correlation coefficient between the Maturity and the compressive strength of high-strength concrete.

  • PDF

A prediction model for strength and strain of CFRP-confined concrete cylinders using gene expression programming

  • Sema, Alacali
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.377-391
    • /
    • 2022
  • The use of carbon fiber-reinforced polymers (CFRP) has widely increased due to its enhancement in the ultimate strength and ductility of the reinforced concrete (RC) structures. This study presents a prediction model for the axial compressive strength and strain of normal-strength concrete cylinders confined with CFRP. Besides, soft computing approaches have been extensively used to model in many areas of civil engineering applications. Therefore, the genetic expression programming (GEP) models to predict axial compressive strength and strain of CFRP-confined concrete specimens were used in this study. For this purpose, the parameters of 283 CFRP-confined concrete specimens collected from 38 experimental studies in the literature were taken into account as input variables to predict GEP based models. Then, the results of GEP models were statistically compared with those of models proposed by various researchers. The values of R2 for strength and strain of CFRP-confined concrete were obtained as 0.897 and 0.713, respectively. The results of the comparison reveal that the proposed GEP-based models for CFRP-confined concrete have the best efficiency among the existing models and provide the best performance.