• Title/Summary/Keyword: concrete specimen

Search Result 1,661, Processing Time 0.026 seconds

Effect of Anchorage Number on Behavior of Reinforced Concrete Beams Strengthened with Glass Fiber Plates

  • Kaya, Mustafa;Kankal, Zeynel Cagdas
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.415-425
    • /
    • 2015
  • Reinforced concrete beams with insufficient shear reinforcement were strengthened using glass fiber reinforced polymer (GFRP) plates. In the study, the effect of the number of bolts on the load capacity, energy dissipation, and stiffness of reinforced concrete beams were investigated by using anchor bolt of different numbers. Three strengthened with GFRP specimens, one flexural reference specimen designed in accordance to Regulation on Buildings Constructed in Disaster Areas rules, and one shear reinforcement insufficient reference specimen was tested. Anchorage was made on the surfaces of the beams in strengthened specimens using 2, 3 and 4 bolts respectively. All beams were tested under monotonic loads. Results obtained from the tests of strengthened concrete beams were compared with the result of good flexural reference specimen. The beam in which 4 bolts were used in adhering GFRP plates on beam surfaces carried approximately equal loads with the beam named as a flexural reference. The amount of energy dissipated by strengthened DE5 specimen was 96 % of the amount of energy dissipated by DE1 reference specimen. Strengthened DE5 specimen initial stiffness equal to DE1 reference specimen initial stiffness, but strengthened DE5 specimen yield stiffness about 4 % lower than DE1 reference specimen yield stiffness. Also, DE5 specimen exhibited ductile behavior and was fractured due to bending fracture. Upon the increase of the number of anchorages used in a strengthening collapsing manner of test specimens changed and load capacity and ductility thereof increased.

An Experimental Study on the Characteristics of Fiber-Reinforced Concrete Beam Without Shear Reinforcement (전단보강근이 없는 섬유보강 철근콘크리트 보의 특성에 관한 실험적 연구)

  • Kim, Jeong-Sup;Go, Song-Kyoon;Choi, Jin-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.83-90
    • /
    • 2003
  • This study examines the material characteristics of fibers and their influences on reinforced concrete through the tests of reinforced concrete by the types of fibers including non-reinforced, steel, polypropylene and cellulose fibers and the test of compressive strength and reinforced concrete beam without shear reinforcement and consequently it obtains the following conclusions. As a result of conducting compressive strength by the types of specimens, fiber reinforced specimen with the highest compressive strength value at 28 days of age was cellulose fiber reinforced specimen as 280.4kgf/$\textrm{cm}^2$ and steel fiber specimen had the highest compressive strength of 250.7kgf/$\textrm{cm}^2$ at 180 days of age. In case of non-reinforced specimen, its compressive strength was 277.4kgf/$\textrm{cm}^2$ at 28 days of age and 273.1kgf/$\textrm{cm}^2$ at 180 days of age. Comparing the compressive strength of non-reinforced specimen to that fiber reinforced specimen showed that the compressive strength of fiber reinforced specimen was lower in the passage of age and the results of this experiment showed no effects of fiber reinforcement. As a result of testing reinforced concrete beam without shear reinforcement, ductility factors of specimens were 4.67 for non-reinforced specimen, 8.18 for steel fiber reinforced specimen, 6.20 for polypropylene fiber reinforced specimen and 5.49 for cellulose reinforced specimen, and it is found that steel fiber reinforced specimen was highest. When non-reinforced specimen and steel fiber reinforced specimen were compared, steel fiber reinforced specimen had higher ductility factor of about 75.2% than that of non-reinforced specimen.

Effects of Specimen Depth on Flexural Compressive Strength of Concrete (부재의 깊이가 콘크리트의 휨압축강도에 미치는 영향)

  • 이성태;김진근;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.121-130
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to depth ratios (h/c = 1, 2 and 4) which have compressive strength of 55 MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also, the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

Elimination of the effect of strain gradient from concrete compressive strength test results

  • Tabsh, Sami W.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.375-388
    • /
    • 2006
  • Poor strength test results are sometimes not an indication of low concrete quality, but rather inferior testing quality. In a compression test, the strain distribution over the ends of the specimen is a critical factor for the test results. Non-uniform straining of a concrete specimen leads to locally different compressive stresses on the cross-section, and eventual premature breaking of the specimen. Its effect on a specimen can be quantified by comparing the compressive strength results of two specimens, one subjected to uniform strain and another to a specified strain gradient. This can be done with the help of a function that relates two parameters, the strain ratio and the test efficiency. Such a function depends on the concrete strength and cross-sectional shape of the specimen. In this study, theoretical relationships between the strain ratio and test efficiency are developed using a concrete stress-strain model. The results show that for the same strain ratio, the test efficiency is larger for normal strength concrete than for high strength concrete. Further, the effect of the strain gradient on the test result depends on the cross-sectional shape of the specimen. Implementation of the results is demonstrated with the aid of two examples.

Corrosion Measurements on Reinforcing Rebars in Reinforced Concrete Specimen (철근 콘크리트 시험편의 철근방식에 관한 측정법)

  • 이강균;장지원;한기훈;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.281-286
    • /
    • 1997
  • Recent construction activities and maintenance of marine facilities have been accelerating to keep up with rapid economic growth in Korea. Marine concrete structures are exposed to salts an chloride from ocean environments. The corrosion of reinforcement steel caused by chloride-penetration into concrete may severely effect the durability of concrete structures. The objective of this research is to develop a durable concrete by investigating the corrosion resistance of various corrosion protection systems utilizing different water/cement ratio, silica fumes, corrosion inhibitors and etc. A tow-year verification test on various corrosion protection systems has been doing in the laboratory and at the seaside. Corrosion investigations on reinforcement steel are now under progress for more than 180 concrete specimen. Corrosion-related measurements include macrocell corrosion current, instant-off voltage between corroding and noncorroding reinforcement, chloride contents, the corroded surface areas on the reinforcement steel, and etc. A low level of corrosion is investigated on reinforcement steels in concrete specimen made with corrosion inhibitors or applied aqueous impregnating corrosion inhibitors into their surface, even though high chloride contents of concrete specimen.

  • PDF

Evaluation on Spalling Properties of Specimen Size with PP Fiber and Fireproof Coating

  • Kim, Gyu-Yong;Min, Choong-Siek;Lee, Tae-Gyu;Miyauchi, Hiroyuki;Park, Gyu-Yeon;Lee, Gwang-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.353-362
    • /
    • 2011
  • High Strength Concrete (HSC) has weakness that in a fire, it is spalled and brittles. The phenomenon of spalling is made by water vapor's being confined in watertight concrete. This study is aimed to evaluate explosive spalling properties of high strength concrete with ${\square}100{\times}100{\times}200$ mm specimen and ${\square}400{\times}400{\times}1500$ mm column. To prevent spalling of concrete, fireproof coating and PP fiber are used. As a result, ${\square}400{\times}400{\times}1500$ mm column was prevented spalling likes ${\times}100{\times}100{\times}200$ mm specimen. When concrete protected failure to explosive spalling, quantity heat ratio (which fireproof coating specimen to pp fiber mixed specimen) between ${\square}100{\times}100{\times}200$ mm and ${\square}400{\times}400{\times}1500$ mm was maximum value at 20 minute, but difference of quantity heat ratio decreased and quantity heat ratio of each specimen is almost same at 30 minute.

Evaluation of Chloride ions Diffusion on Hardened Cement paste And Durability of Concrete Specimen Using Inorganic Coating Material (무기질 도료를 이용한 시멘트 경화체의 C1 ̄이온확산과 콘크리트의 내구성 평가)

  • 김인섭;이종규;추용식;김병익;신영훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.221-226
    • /
    • 2001
  • Chloride diffusion effect of cement paste, freezing and thawing test, carbonation of concrete specimen were carried out using inorganic coating material. According to the chloride ions diffusion test, it is elucidated that permeability and diffusion coefficient of Cl ̄ ions and apparent coefficient of coated cement paste is smaller than plain cement paste. A durability of coated concrete specimen was enhanced by the experiment result of concrete carbonation and freezing thawing test.

  • PDF

The Effect of Fiber Length and Specimen Size on Spalling and Temperature Distribution in High Strength Concrete Specimen (고강도 콘크리트 부재에서 섬유 길이와 부재 크기가 폭렬 특성 및 온도 분포에 미치는 영향)

  • Park, Chan-Kyu;Lee, Seung-Hoon;Sohn, Yu-Shin;Kim, Han-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.17-20
    • /
    • 2006
  • Recently, in order to reduce the spalling of high strength concrete under fire, the addition of organic fibres to high strength concrete has been investigated. In this study, the effect of fiber length and specimen size on the spalling and temperature distribution in high strength concrete specimen was experimentally investigated. Three HSC specimens measuring $305{\times}305mm$, $500{\times}500mm$ and $700{\times}700mm$ with the fiber were prepared. The fiber length was 6mm and 10mm. As a result, it appears that when the remaining ratios(by weight) of fibre at $300^{\circ}C$ and $350^{\circ}C$ are less than 80% and 50%, respectively, the spalling of high strength concrete is prevented.

  • PDF

An Experimental Study on the Effect of Capping Type of Cylindrical Concrete Specimen on Compressive Strength (원주형 콘크리트 공시체의 캡핑종류별 압축강도 영향)

  • 이상완;김수만;백승종;김광돈;이평석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.167-172
    • /
    • 2000
  • There are a variety of factors affecting measured compressive strength of hardened concrete. One of them is the end surface condition of concrete specimen. So, many capping methods have been developed for the specimen to meet the end condition requirement of ASTM C 39. A series of experimental strength comparison study was carried out using several representative capping methods, including pad capping method which is one of unbonded elastomeric capping system and was newly adopted in the ASTM standard. A comparison was also focused on their economy, convenience, harmfulness, etc.

  • PDF

Effects of Specimen Depth on Flexural Compressive Strength of Concrete (콘크리트의 휨압축강도에 미치는 부재깊이의 영향)

  • Yi, Seong-Tae;Kim, Jin-Keun;Lee, Yun;Kim, Jang-Ho;Yang, Eun-Ik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.115-120
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to-depth ratios(h/c=1, 2 and 4) which have compressive strength of 55MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

  • PDF