• Title/Summary/Keyword: concrete road

Search Result 1,003, Processing Time 0.024 seconds

Performance Evaluation of Surface Textures on Concrete Pavement (콘크리트 거친면 마무리처리에 따른 공용성 평가)

  • Park, Kwon-Je;Mun, Jun-Beom;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.1-11
    • /
    • 2004
  • This study tries to propose the most effective pavement texture method through the performance evaluation of variable texture methods. Noise 2$\sim$3dB is reduced in the section of uniform space 18m longitudinal tinning. This result is proved by comparing the magnitude of noise in two sections. The noise of 26mm longitudinal firming section is greater than that of 18mm section by 2$\sim$3dB(A). The skid resistances measured in all test section show the reasonable results. The roughness or all the test sections satisfies AASHTO roughness standard (PrI 16cm/km). The result or questionnaire survey about driving quality shows that the longitudinal tinning is the most effective method. As the result of a visual measurement, it is proved that the section applied uniform space 26mm longitudinal tinning and the general section applied uniform space 26mm transverse tinning could drain water effectively. As the result of analysis with the ranking method, the 18mm longitudinal tinning in selected as one of the most effective tinning methods. In addition, 26mm longitudinal tinning, random space transverse tinning, and transverse drag are selected in order.

  • PDF

Evaluation on the Effect of Depth Buried Pipeline and Refilling Materials on Pavement Performance (도로하부 매설관의 매설심도 및 되메우기 재료가 포장체에 미치는 영향 평가)

  • Baek, Cheolmin;Kim, Yeong Min;Kwon, Soo-Ahn;Hwang, Sung Do;Kim, Jin Man
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • PURPOSES : Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline (about 30~70cm deeper) causing the waste of cost and time. Therefore, this research investigated the effect of various buried depths of pipeline on pavement performance in order to modify the criteria to be safe but economical. In addition, a recycled aggregate which is effective in economical and environmental aspect was evaluated to be used as a refilling material. METHODS : In this study, total 10 pilot sections which are composed with various combinations of pavement structure, buried depth of pipeline, and refilling material were constructed and the telecom cable was utilized as a buried pipeline. During construction, LFWD (Light Falling Weight Deflectometer) tests were conducted on each layer to measure the structural capacity of underlying layers. After the construction is completed, FWD (Falling Weight Deflectometer) tests and moving load tests were performed on top of the asphalt pavement surface. RESULTS : It was found from the LFWD and FWD test results that as the buried depth decrease, the deflections in subbase and surface layer were increased by 30% and 5~10%, respectively, but the deflection in base layer remained the same. In the moving load test, the longitudinal maximum strain was increased by 30% for 120mm of buried depth case and 5% for 100mm of buried depth case. Regarding the effect of refilling material, it was observed that the deflections in subbase and surface layer were 10% lager in recycled aggregate compared to the sand material. CONCLUSIONS : Based on the testing results, it was found that the change in buried depth and refiliing material would not significantly affect the pavement performance. However, it is noted that the final conclusion should be made based on an intensive structural analysis for the pavement under realistic conditions (i.e., repeated loading and environmental loading) along with the field test results.

A Study on Architecture and Urban Regeneration in Korea through the Perception of Body (몸의 지각론에 의한 유휴시설의 건축도시 재생에 관한 연구)

  • Hyung, Hyung-Chir;Joh, Hahn
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.6
    • /
    • pp.210-221
    • /
    • 2017
  • First, we can define how our body perceives the external world and embodies its senses through the philosopher Merleau - Ponty. These philosophical orientations of Merleau-Ponty also appear to urban theorists such as Jane Jacobs, Gordon Cullen, and Juhani Pallasmaa. In other words, after the Second World War, people began to pay attention to human emotions and perceptions while opposing human rational thinking. Especially, they reject the abstract space of modernism and explore the everyday city space where the local character of the area lives. This place is a space where the collective memory of the group is shared over several generations. So, in this space, people's active perceptual system works actively. In the sense of this continuity of time, their ideas intersect with the concept of urban. Specifically, Jacobs criticizes massive development and proposes the development of a small block-based city with a commonality of old and new. In addition, we argue that urban space can be a visually interesting object through the continuous visual concept of urban theorist Cullen. In particular, he rediscovers the value of traditional urban space through visual experience between architecture and urban facilities. Finally, the architectural city theorist, Pallasmaa., criticizes the visual centrality of modern cities and thinks about the value of multidisciplinary space that can be experienced in architecture. This study examines the space of reproduction in detail on the perspective of the body philosophy and urban theorists. In other words, the play space inherits the natural city time, so when our body experiences this play space, we can actively sense and perceive the various senses. So we can invoke the active external actions of our bodies. Through the analysis of the size of the reconstruction space of the architectural city, various types of body senses and responses can be. Yoon Dongju Literary Museum, which renovated the old water tank of the city, can recognize the unfamiliar sense of body in everyday life through the traces and smells of water in the past and the restrained visuality. In addition, Seonyudo Park, which regenerates the waste water purification plant, can experience a phenomenal phenomenon through water space, old concrete and traces of steel. Finally, with the most recently played Seoul Road 7017 can experience interesting urban spaces in terms of a variety of plants, a human scale space creating movement, and a continuous visual.

A Study on the Characteristics of Korean Townscape in Perspective of the Oriental World View (동양적 세계관의 관점에서 본 한국도시경관의 특성)

  • 김한배;이규목
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.4
    • /
    • pp.55-68
    • /
    • 1994
  • It has been generally agreed that the city form especially in the preindustrial age resembled their own world view, either in the western or the eastern cultural sphere. So, we aimed to redefine the characteristics of oriental world views compared with the western one, in order to find the relative nature of the Korean townscapes. It is said that the both world views(of western and oriental) are composed of the contrastive binary concepts in common, but there seems to have been nearly contrary differences in these two world views. Wheareas the former was based on the passively segregational and oppositional dualism, the latter, on the dynamically harmonious and complementary dualism, called generally as 'Yin(陰) and Yang(陽)'. Thus, the oriental world view can be thought as the 'philosophy of the relationship', which aim to unify the dualism ultimately with the help of this relationship. So, we can assume a certain third and intermediate concept between these dual concepts of the world view, which can unify these two into the one holistic whole. And the focuses of the most traditional oriental philosophies were concentrated on this, so called, 'the third concept', namely Taoistic 'Tochu(道樞)', Buddhistic 'Kong(空)' or Confucian 'Chung(中)'. And this triple concept, including the third one, of the oriental world view revealed a more concrete form of the cosmological relationship, as the triple structure; 'Heaven(天), Earth(地), and Man(人)', in which the 'Man' is thought as the middle or the center of the world. In this manner, we could found this oriental 'triple world view' was revealed in the real topology of most places in the Korean traditional city and the whole townscape itself. So, in the scale of houses and the roads around them, we can construe the 'Maru(a central board-floored room)' and the 'Madang(a inner court)' as the 'third and intermediate space(中)' between the interior space(陰) and exterior space(陽) in the former, and between the private house(陰) and the public residential road(陽) in the former case, and between the dual parts(陰,陽) of the city representing the contrary social classes and the contrastive visual landscapes. So, we insist that this 'triple world view' represented in the townscape can be one of the most important characteristics of Korean traditional townscape. And this third intermediate spaces, which generate the active social contact and the harmonious relationship among the people, can be the most important cues, as the central places, in the interpretation of the Korean townscapes even in contemporary circumstance, which inherits its spatial and social frame more or less from the preceding one.

  • PDF

A design guide to minimize frost heave in unbound pavement layers over box culverts (저토피부 암거상부 포장의 도상피해 예방을 위한 단명설계)

  • Seo, Young-Guk
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • During the whole month of December in 2005, Korea experienced both heavy snowfall and freezing temperature in southeast regions, which had caused frost related damages to many pavements laid on top of box culverts. In-situ observation revealed that the formation of ice lenses in subgrade and subsequent unbound layers led to upward heaving and transverse cracks in concrete and asphalt pavements. This has affected the long-term performance of pavements, as well as has threatened drivers' safety for a while. Recently, Korea Expressway Corporation has proposed a design guide to better protect newly constructed unbound pavement layers over culverts from frost heave. A trench drainage system has been selected to effectively draw off water and to alleviate pore-water pressure in soils during the coldest season. This paper presents experimental and analytical backgrounds behind this new design guide. Soil specimens retrieved from the sites are tested to quantify clay content and to estimate the permeability of subgrade. A 2-D ground seepage analysis has been conducted to better understand the changes in pore water pressures as a function of grain size. Finally, an optimum size of trench drainage is determined based on numerical analysis and workability in the field.

  • PDF

A Fundamental Approach for Developing Deformation Strength Based on Rutting Characteristics of Asphalt Concrete (소성변형과의 상관성에 근거한 아스팔트 콘크리트의 변형강도 개발을 위한 기초연구)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Jun-Eun;Choi, Sun-Ju
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.23-39
    • /
    • 2002
  • This study dealt with developing a new approach for finding properties which might represent rut resistance characteristics of asphalt mixture under static loading. Two aggregates, a normal asphalt (pen 60-80) and 5 polymer-modified asphalts were used in preparation of 12 dense-graded mixtures. Marshall mix design was used in determination of OAC and each mixture at the OAC was prepared for a newly-developed Kim test on Marshall specimen (S=10cm) and gyratory specimen (S=15cm), and for wheel tracking test. Kim test used Marshall loading frame and specimens were conditioned for 30min at $60^{\circ}C$ before loading through Kim tester an apparatus consisting of a loading column and a specimen and column holder Diameter (D) of column was 3cm and 4cm with each column having different radius (r) of round cut at the bottom. The static load was applied at 50mm/min in axial direction of the specimen, not in diametral direction. The maximum load ($P_{max}$) and vertical deformation (y) at $P_{max}$ point were obtained from the test. A strength value was calculated based on the $P_{max}$ r, D and y by using the equation $K_D = 4P_{max}/{\pi}(D-2(r-\sqrt{2ry-y^2}))^2$ and is defined as the deformation strength ($kgf/cm^2$). The values of $P_{max}$/y and $K_I=K_D/y$ were also calculated. In general the leading column diameter and radius of round cut were significant factors affecting $K_D$ and $P_{max}$ values while specimen diameter was not. The statistical analyses showed the $K_D$ had the best correlation with rut depth and dynamic stability. The next best correlation was found from $P_{max}$ which was followed by $P_{max}$/y and $K_I$ in order.

  • PDF

International Research Status on Spent Nuclear Fuel Structural Integrity Tests Considering Vibration and Shock Loads Under Normal Conditions of Transport (정상운반조건의 진동 및 충격하중을 고려한 사용후핵연료의 구조적 건전성 시험평가 해외연구현황)

  • Lim, JaeHoon;Cho, Sang Soon;Choi, Woo-seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.167-181
    • /
    • 2019
  • Currently, the development of evaluation technology for vibration and shock load characteristics and spent nuclear fuel structural integrity under normal conditions of transport is being conducted in the Republic of Korea. This is the first such research conducted in the Republic of Korea and, thus, previous international studies need to be investigated and will be referred to in the ongoing project. Before 2000, several studies related to measurement of vibration and shock loads on spent nuclear fuel were conducted in the US. US national research institutes conducted uniaxial fuel assembly shaker tests, concrete block tests, and multi-axis fuel assembly tests between 2009 and 2016. In 2017, multi-modal transportation tests including road, sea, and rail transport were also performed by research institutes from the US, Spain and the Republic of Korea. Therefore, test preparation procedures, acceleration and strain measurement results, and finite-element and multi-body dynamics analysis were investigated. Based on the measured strain data, the preliminary conclusion was obtained that the measured strain was too small to cause damage to spent nuclear fuel rods. However, this conclusion is a preliminary conclusion that only reviews part of the results; a detailed review is being conducted in the US. The investigation of international studies on spent nuclear fuel structural integrity tests considering vibration and shock loads under normal conditions of transport in the US will be useful data for the project being conducted in the Republic of Korea.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.

Basic Performance Evaluation of a Tack Coat Material for Use with a Spray Paver (동시포설 공법을 위한 택코트 재료의 기초 성능 평가 연구)

  • Jo, Shinheang;Kim, Kyungnam;Cui, Wenhui;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.737-744
    • /
    • 2021
  • Spray paving minimizes material lost during the construction or repair of a road surface, and it can be done in conjunction with tack coating. This approach involves applying the asphalt mixture at the same time as spraying the tack coat by attaching a spraying device to the asphalt paver. When applying an asphalt overlay to an aged concrete surface, it is important to ensure the adhesion performance between different material properties. Accordingly, there is a need for a tack coat that can be applied by spray paving and that exhibits good adhesive performance on different materials. In this study, bonding strength tests under various conditions were performed to evaluate the basic performance of a tack coat developed for use with a spray paver. The bonding performance of the tack coat was observed to be affected by curing conditions and material lost during construction. The test results also showed that the tensile and shear bonding strengths of the developed tack coat were 1.21 and 1.99 times higher than those of a conventional one, respectively. As a result, the developed tack coat is considered suitable for application to spray paving.

Possibility of Using Landfill Coal Ash as CLSM Material for Emergency Restoration of Ground and Road Joint Parts (지반 및 도로 공동부의 긴급복구용 CLSM 재료로 매립 석탄저회 활용 가능성)

  • Jin-Man Kim;Sang-Chul Shin;Kyoung-Nam Min;Ha-Seog Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • This study aims to develop CLSM fill material for emergency restoration using landfill coal ash. As a result of examining physical properties such as particle size distribution and fines content of landfill coal ash, bottom ash, fly ash, and general soil were mixed, and SP was found to have a density of 2.03 and a residual particle pass rate of 7.8 %. CLSM materials that secure fluidity in unit quantities without using chemical admixtures such as glidants and water reducing agents have a high risk of material separation due to bleeding. As a result of this experiment, it was found that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for 4 hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it is judged that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.