• Title/Summary/Keyword: concrete road

Search Result 1,003, Processing Time 0.03 seconds

Structure-borne noise in a house generated by the subway operation (지하철 주행에 의한 건물내 고체음)

  • 채수연
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.2
    • /
    • pp.21-25
    • /
    • 1986
  • Structure-borne noise due to forced vibration which is originated from subway operation and transmitted to buildings in order of rail-wood tie-concrete bed-structure-soil-building foundations-members of building results in social problem of environmental pollution. Moreover this becomes a serious problem because of the increment of surface traffic and subway operation made by meeting traffic system in crowded cities. Since subway is constructed along the principal road or through the residential area and as the worst case may be, building foundations is contact with top part of subway structure, it is possible that vibration resonance results in fatal damage of buildings. And, structure-borne vibration noise due to subway operation at late and early hours have the residents suffer from insonmia, restlessness and so on. Therefore, to satisfy the future need concerning the environmental protection, this report deals with the influence of structure-borne vibration noise on the basis of the characteristics of Seoul Subway System.

  • PDF

Analysis of Characteristics in Low-shrinkage Cement Treated Base (저수축 시멘트 안정처리 기층의 특성분석)

  • Lee, Seung-Woo;Jeon, Beom-Jun;Kim, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.61-70
    • /
    • 2004
  • Cement treated Soil has superior characteristics as pavement-base including strength, curability, hardness, freezing resistance. However drying shrinkage of Cement treated base has been indicated as disadvantage, since reflection crack of surface layer is induced from drying shrinkage of cement treated base. This study propriety about low-shrinkage cement treated base that can control shrinkage of cement and control reflection crack at asphalt overlay & concrete slab.

  • PDF

Development of Falling Weight Deflectometer for Evaluation of Layer Properties of Flexible Pavement (도로포장 구조체의 물성 추정을 위한 FWD의 설계 및 제작)

  • 황성호;손웅희;최경락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.124-130
    • /
    • 2003
  • Many structural evaluation procedures of road and airfield pavements use the Falling Weight Deflectometer (FWD) as a critical element of non-destructive deflection testing. FWD is a trailer mounted device that provides accurate data on pavement response to dynamic wheel loads. A dynamic load is generated by dropping a mass from a variable height onto a loading plate. The magnitude of the load and the pavement deflection are measured by a load celt and geophones. And database concerning pavement damage should be enhanced to analyze loss of thickness asphalt layer caused from the plastic deformation of pavement structure, such as cracking or rutting. The prototype FWD is developed, which consists of chassis system, hydraulic loading system, data acquisition and analysis system. This system subsequently merged to from automation management system and is then validated and updated to produce a working FWD which can actually be used in the field.

Optimum Design of Cab Suspension for Agricultural Tractors (농용 트랙터 안전캡 현가 장치의 최적 설계)

  • 최현준;김경욱;김종언
    • Journal of Biosystems Engineering
    • /
    • v.23 no.4
    • /
    • pp.327-334
    • /
    • 1998
  • This work was intended to determine the optimum values of the cab suspension parameters by a simulation method in order to minimize the seat accelerations of agricultural tractors in the frequencies lower than 50Hz. A dynamic model of cab motions was developed and verified using a tractor excited over half-sine bumps on a concrete test road. A simulation program based on the model was also developed. A method was proposed to determine the optimum values of the suspension parameters. It was found that the natural frequencies of the cab and seat suspensions must be apart as far as possible until the sum of seat and cab accelerations is minimized, which also reduces the seat accelerations maximally.

  • PDF

A Study on the Effect of a Series of Trucks on Dynamic load Factor (연속 차량하중에 의한 충격하중의 영향에 관한 연구)

  • 황의성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.105-110
    • /
    • 1992
  • This study deals with the effect of a series of moving trucks on the Dynamic Load Factor (DLF). The DLF is calculated by investigating the load effect of moving trucks. Therefore, analytical models for frocks, bridge, and road profiles were developed and dynamic structural analysis computer program were developed. Then the DLFs are calculated as a ratio of maximum dynamic load effect and maximum static load effect. Trucks used in this study are 5 axle semi tractor-trailer with the weight of 36 and 54 ton. Simply supported prestressed concrete box girder bridges with 20 and 40m span length are selected. From the results of the DLF for various headway distances, they show a very scattered and relatively high values of the DLF in case of a 20m span length bridge. For a 40m span length bridge, the results show less scattered and small increase of the DLF compared to a 20m span length bridge.

  • PDF

Research on the Physical Characteristics of the Elder People and Park Design

  • Zhang, Yun-Ji;Piao, Yong-Ji;Cho, Tae-Dong
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.661-666
    • /
    • 2012
  • This article reveals the relationship between the body characteristics of the elder people and the size of park facilities during utilization of parks by scientific investigation. The experiment involves 540 elder people, and offer concrete evidence for park design in ageing society. These evidences mainly consists of the following aspects: First, the relation between physical situation of elder people and their using parks. Secondly, the relation between the hearing status and exchange circle diameter in elders. The last is the relation between the distance visual acuity and designing the scene. Finally we get the most suitable step length range, stairs height, road slope, communication space diameter and general formulas about the best vision distance for elder people.

A Decision Support Methodology for Remediation Planning of Concrete Bridges

  • Rashidi, Maria;Lemass, Brett
    • Journal of Construction Engineering and Project Management
    • /
    • v.1 no.2
    • /
    • pp.1-10
    • /
    • 2011
  • Bridges are critical and valuable components in any road and rail transportation network. Therefore bridge remediation has always been a top priority for asset managers and engineers, but identifying the nature of true defect deterioration and associated remediation treatments remains a complex task. Nowadays Decision Support Systems (DSS) are widely used to assist decision makers across an extensive spectrum of unstructured decision environments. The main objective of this research is to develop a requirements-driven methodology for bridge monitoring and maintenance which has the ability to assess the bridge condition and find the best remediation treatments using Simple Multi Attribute Rating Technique (SMART); with the aim of maintaining a bridge within acceptable limits of safety, serviceability and sustainability.

Development of finite element model using incremental endochronic theory for temperature sensitive material

  • Kerh, Tienfuan;Lin, Y.C.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.115-126
    • /
    • 2003
  • A novel finite element model based on the incremental endochronic theory with the effect of temperature was developed in this study to explore the deformed behaviors of a flexible pavement material. Three mesh systems and two loading steps were used in the calculation process for a specimen of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test for temperatures at $20^{\circ}C$ and at $40^{\circ}C$ were compared with available experimental measurements to verify the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the thermal effect were presented from deformations in different profiles and displacement plots for the entire specimen. The characteristics of changing asphalt concrete material under a specified loading condition might be seen clearly from the numerical results, and might provide an useful information in the field of road engineering.

Prediction of Permanent Deformation in Asphalt Concrete Using Hierarchical Models (계층 모델을 이용한 아스팔트 콘크리트의 영구 변형 예측)

  • Li, Qiang;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • 한국도로학회:학술대회논문집
    • /
    • 2010.09a
    • /
    • pp.99-107
    • /
    • 2010
  • A permanent deformation model was developed in this study based on the shear properties of asphalt mixtures such as cohesion and friction angle. Triaxial compressive strength (TCS) and repeated load permanent deformation (RLPD) tests on the three types of asphalt mixtures are performed at various loading and temperature conditions to correlate shear properties of asphalt mixtures to rutting performance. It is observed from the tests results that the ratio of shear stress to strength accurately identifies the mixture rutting performance. It could take care of not only mixture types but also load and temperature conditions dependences. Three different versions of the permanent deformation model based on different input levels are proposed and verified using the tests data. The proposed model based on the ratio of shear stress to strength can successfully predict the permanent deformation of various asphalt mixtures all the way up to the 10% of permanent strain including all three stages of permanent deformation in a wide range of loading and temperature conditions without changing model coefficients.

  • PDF

The Effects of Slab Size on Pavement Life Cycle Cost

  • Parsons, Timothy A.;Hall, Jim W.Jr
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.49-54
    • /
    • 2006
  • The purpose of this study was to determine the effect of expansion joint spacing (slab size) on the life cycle costs of owning Portland Cement Concrete (PCC) airfield pavements. Previous research has shown that slab size has a statistically significant impact on pavement performance. A probabilistic life cycle cost analysis was performed to determine if the effect of slab size on pavement performance would affect the total cost of ownership of PCC pavements. Data from 48 Pavement Condition Index (PCI) inspections of military and civilian airfields were used to develop probability-of-distress-by-condition curves, which were then used to develop probabilistic cost-of-repair-by-condition curves. A present worth life cycle cost analysis was then performed for various slab sizes, using construction costs, rehabilitation costs, and maintenance costs. Maintenance costs were determined by assuming a condition deterioration rate appropriate for each slab size and applying the cost-by-condition curves. The probabilistic cost-of-repair-by-condition curves indicated that smaller slabs are more expensive to repair on a unit cost basis. Life cycle cost analysis showed that larger slabs have a higher total cost of ownership than smaller slabs due to a faster rate of deterioration.

  • PDF