• Title/Summary/Keyword: concrete repair

Search Result 808, Processing Time 0.028 seconds

Mechanical and durability properties of fluoropolymer modified cement mortar

  • Bansal, Prem Pal;Sidhu, Ramandeep
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.317-327
    • /
    • 2017
  • The addition of different types of polymers such as SBR, VAE, Acrylic, etc. in concrete and mortar leads to an increase in compressive, tensile and bond strength and decrease in permeability of polymer modified mortar (PMM) and concrete (PMC). The improvement in properties such as bond strength and impermeability makes PMM/PMC suitable for use as repair/retrofitting and water proofing material. In the present study effect of addition of fluoropolymer on the strength and permeability properties of mortar has been studied. In the cement mortar different percentages viz. 10, 20 and 30 percent of fluoropolymer by weight of cement was added. It has been observed that on addition of fluoropolymer in mortar the workability of mortar increases. In the present study all specimens were cast keeping the workability constant, i.e., flow value $105{\pm}5mm$, by changing the amount of water content in the mortar suitably. The specimens were cured for two different curing conditions. Firstly, these were cured wet for one day and then cured dry for 27 days. Secondly, specimens were cured wet for 7 days and then cured dry for 21 days. It has been observed that compressive strength and split tensile strength of specimens cured wet for 7 days and then cured dry for 21 days is 7-13 percent and 12-15 percent, respectively, higher than specimens cured one day dry and 27 days wet. The sorptivity of fluoropolymer modified mortar decreases by 88.56% and 91% for curing condtion one and two, respectively. However, It has been observed that on addition of 10 percent fluoropolymer both compressive and tensile strength decreases, but with the increase in percentage addition from 10 to 20 and 30 percent both the strengths starts increasing and becomes equal to that of the control specimen at 30 percent for both the curing conditions. It is further observed that percentage decrease in strength for second curing condition is relatively less as compared to the first curing condition. However, for both the curing conditions chloride ion permeability of polymer modified mortar becomes very low.

Compressive and Adhesive Strengths of Mortars using Re-emulsification Type Polymer and Ultra-Rapid-Hardening Cement (재유화형 분말수지와 초속경 시멘트를 혼입한 모르타르의 압축강도 및 접착강도 특성)

  • Lee, Kwang-Il;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.329-335
    • /
    • 2018
  • The objective of this study is to develop a mortar mixture with high workability and adhesive strength for section jacketing in seismic strengthening technology of existing concrete structures. To achieve targeted requirements of the mortars (initial flow exceeding 200 mm, compressive strength of 30MPa, and adhesive strength exceeding 1MPa), step-by-step tests were conducted under the variation of the following mixture parameters: water-to-binder ratio, sand-to-binder ratio, polymer-to-binder ratio, dosage of viscosity agent, and content of ultra-rapid-hardening cement. The adhesive strength of the mortars was also estimated with respect to the various surface treatment states of existing concrete. Based on the test results, the mortar mixture with the polymer-to-binder ratio of 10% and the content of ultra-rapid-hardening cement of 5% can be recommended for the section jacketing materials. The recommended mortar mixture satisfied the targeted requirements as follows: initial flow of 220 mm, high-early strength gain, 28-day compressive strength of 35MPa, and adhesive strength exceeding 1.2MPa.

The study on mechanical properties of PC panel with steam curing condition (증기양생 조건에 따른 터널 PC 패널의 물리적 특성에 관한 연구)

  • Ma, Sang-Joon;Jang, Pil-Sung;Shiin, Jin-Yong;Nam, Kwan-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Many problems exist in the current cast in place concrete lining used in domestic tunnel construction. Especially, the crack of tunnel lining brings about a social and economic problem. It has a lot of influence on stability of structure and the fine finish of lining. So enormous repair-work and reinforcement of tunnel lining could occur an running out of government's budget. In our country, there are domestic production enterprises which produce a special pre-cast concrete product, but the technical level of them is still far behind compared to developed countries. Also, optimum steam coring method is important for the production of high quality product. But there is no regulation of steam curing method in our country. This study is to investigate the properties of PC panel according to the variation of steam curing conditions such as presteaming time and rate of temperature rise. The result shows that the optimum presteaming time of steam curing method in PC panel is more than 1 hour and the desirable rate of temperature in curing chamber is about $20^{\circ}C/hr$.

  • PDF

Fundamental Properties and Hydration Characteristics of Mortar Based on MgO Added Industrial By-products (산업부산물을 첨가한 MgO 기반 모르타르의 기초물성 및 수화특성에 관한 연구)

  • Hong, Sung-Gul;Kim, Do-Young;Lee, Dong-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.565-572
    • /
    • 2013
  • Hydration and physical characteristics of chemically-bonded phosphate ceramic (CBPC) binder based on dead-burned Mg-O with six different blends are investigated for efficient repair construction material by retarding set phase with $H_3BO_3$. The test specimen of the blender with silica fume shows higher compressive strength after 75 days. The CBPC with silica fume results in higher modulus of rupture that others. The test specimens of CBPC eludes lower calcium ion than that of OPC (Ordinay Portland Cement). The X-ray diffraction pattern shows that hydration results in the formation of magnesium hydroxide, M-S-H gel and $MgCO_3$ for the specimen with silica fumes. Combination with calcium for MgO is not desirable due to no formation of chemical bond between two components. Based on the experimental program, the mixture of MgO and silica fume shows efficient performance in strength and durability.

Development of Maintenance Simulation System and Prediction of Chloride Ion Permeation for Marine Concrete Structures (해양콘크리트 구조물의 염해 예측 및 유지보수 시뮬레이션시스템 개발)

  • Lee, Chang Su;Kim, Meyong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.64-75
    • /
    • 2013
  • As both laboratory accelerated experiment and field exposure experiment were performed, at recent, the fifth field test at five year exposures was proceeded according to long period experimental plan. Field experiment, for the adoption of the developed evaluation model, which is consisted of the analysis of chloride penetration profile at gate bridges of sea-dike completed 30 years ago was carried out during upgrading the basic evaluation model with analyzing the annual field test data. The surface concentration of chlorides was replaced to the concentration of chloride of inner concrete near the surface chlorides among his research results at basic model. Maage's suggestion function was accepted too as a diffusion coefficient of chloride after verifying the change of diffusion coefficient by analysis of annual field test data. The comparison of field data with model predictions and the estimation of remaining life time demonstrates that the proposed updated model and maintenance simulation system can be used to predict the chloride penetration profile in the marine tidal zone and appropriate repair period and cost.

An Experimental Study on the Shear Strength of Chemical Anchors Embedded into Non Cracking Plain Concrete (비균열 무근콘크리트에 매입된 케미컬 앵커의 전단내력에 관한 실험적 연구)

  • Seo, Seong-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • The use of post installed anchors with adhesive type has lately been increasing when it is necessary to repair, reinforce, or remodel structures. This method provides flexibility and simplicity for construction of structural members that require adhering or fixing. Meanwhile, strength evaluation of anchors with expansion type among post installed anchors systems has nearly reached setting up stage like design code through continual experimental studies for the last ten years, but analyses or experimental studies on anchor system with adhesive type are not yet sufficient. Accordingly, the designers and builders of korea depend on foreign design codes since there are no exact domestic design code they could credit. In this study, the objectives are investigating the effects on adhesive strength of anchors embedded into plain concrete by shear experiments of anchors with variables such as edge distance, anchor interval, and load direction and supplying basic data for enactment of domestic design code.

Evaluation of Crack Self-healing Performance in Centrifugal Molding Concrete by Permeability Test (원심성형 콘크리트의 투수시험을 통한 균열 자기치유 성능평가)

  • Hwang, Chul Sung;Woo, Hae Sik;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.84-89
    • /
    • 2018
  • Recently, study on self-healing materials have been performed to increase the life by repairing the damage of structures themselves, which are difficult to repair or require high maintenance costs. A water permeability test has been widely used for the evaluation of self-healing performance. However, in the self-healing performance test method, the initial crack width of the concrete greatly affects on the self-healing performance but it does not have a consistent standard. Therefore, in this study, the correlation between crack and permeability and that between time and permeability were analyzed based on crack width and permeability. In addition, since the initial crack width measured by optical microscope is not reliable, the value is derived from the Poiseuille flow and the tendency of time-permeability and time-crack width are analyzed.

Development of the Maintenance System for Gate Bridge (배수갑문 노후도 감시시스템 구축연구)

  • Kim, Kwan-Ho;Cho, Young-Kweon;Kim, Myeong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1025-1028
    • /
    • 2008
  • Using of maintenance system for gate bridge algorism, We made out algorism and engine for prediction of life cycle by neutralization, freezing-thawing and damage from sea wind. To objective of this system, user can use easily with maintenance system for gate bridge. Also, to improve of maintenance efficiency, web-program made out by superannuated evaluation and analysis of field exposure data. To develope web-program, we framing structure design of database, which is adapted to method of maintenance, repair, and reinforcing

  • PDF

An Experimental Study on Thermal Damage and Spalling of Concrete Lining in Tunnel Fire (터널화재시 콘크리트 라이닝의 폭렬 및 화재손상에 관한 실험적 연구)

  • Kim, Heung-Youl;Kim, Hyung-Jun;Cho, Kyung-Suk;Lee, Jae-Sung;Kwan, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.110-120
    • /
    • 2009
  • In tunnel, though the frequency of fire occurrence is relatively lower than other structures, the characteristics of sealed space tends to cause the temperature to rapidly rise to more than $1000^{\circ}C$ within 5minutes after fire, which might eventually lead to a large fire that usually results in a loss of lives and the damage to the properties, not to mention a huge cost necessary for repair and maintenance after fire. We have developed various conditions of the heating furnace and the method to install a thermo couple within the furnace based on EFNARC and KS F 2257-1. Referring to tunnel fire scenarios, it clarified the heat transfer characteristics of concrete PC panel lining depending on fire intensity (ISO, $1^{\circ}C$/SEC, MHC, RWS), and to identify the range of thermal damage, the evaluation was carried out using ITA standard. As a result, 30mm under ISO fire condition, 20mm under $1^{\circ}C$/SEC, 100mm under MHC and 50mm under RWS were measured. And when it comes to spalling, 30mm was measured under RWS and MHC.

An Experimental Study on the Ion Reaction and the Electrochemical Rebar-Corrosion in Aqueous Solution Mixed with Sulfate and Chloride Ion-Reactive Material (황산, 염소이온 반응 소재 혼입 수용액에서의 이온반응성 및 전기화학적 철근 부식에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kang, Tae-Won;Lim, Chang-Gil;Kim, Hong-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this study, amine derivatives and ion exchange resins were selected to actively control penetration ions ($SO{_4}^{2-}$, $Cl^-$) as the element technology of repair materials for concrete structures in drainage environments. Ions ($SO{_4}^{2-}$, $Cl^-$) adsorption performance and corrosion resistance of calcium hydroxide solution with amine derivative and ion exchange resin were confirmed by ion chromatography and potentiostat analysis. As a result of the experiment, it was confirmed that the amine derivative is excellent in the adsorption of chlorine ion and the ion exchange resin is excellent in the adsorption of sulfate ion. It has been confirmed that corrosion resistance can be increased by proper combination of two materials in the calcium hydroxide solution containing sulfate ion and chloride ion simulating sewage environment.