• 제목/요약/키워드: concrete rehabilitation

검색결과 315건 처리시간 0.022초

보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능 (Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation)

  • ;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

탄소섬유판으로 횡보강된 콘크리트 압축부재의 구조거동에 관한 실험적 연구 (An Experimental Study on the Structural Behavior of Reinforced Concrete Compressive Members Rehabilitated with Carbon Fiber Laminate)

  • 이희경;김성철;유성훈;김중구;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.679-684
    • /
    • 1997
  • In this study, compressive strengths of reinforced concrete compression members rehabilitated with C.F.L. were analyzed from the test. Test parameters are spacing, spliced length, and section area of rehabilitation material. Displacement, failure load were measured during test. The failure mode and ultimate load were analyzed from these measured data. Test result shows that closer spacing of C.F.L. is more effective. strengthening with 1-ply C.F.L. is more effective than that of specimen with 2-ply C.F.L. The compressive capacity of specimen spliced ($\pi$.D)/2 shows almost similar strength to that of non-spliced specimen. The ultimate load carrying capacity of specimen strengthened with C.F.L. is increased to 1.11~1.68 times of that of non-rehabilitation specimen.

  • PDF