• Title/Summary/Keyword: concrete property

Search Result 957, Processing Time 0.029 seconds

Repair and Strengthening Methods for Concrete Structures using Sprayed Fiber Reinforced Polymers - Material Property of Sprayed FRP - (Sprayed FRP 공법에 의한 콘크리트 구조물의 보수.보강법 개발에 관한 연구 - Sprayed FRP를 구성하는 재료특성에 관한 연구 -)

  • Lee, Li-Hyung;Lee, Kang-Seok;Son, Young-Sun;Byeon, In-Hee;Lim, Byung-Ho;Na, Jung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • The main purpose of this study is to develop a Sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing carbon or glass shot fibers and the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the Sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of Sprayed FRP, this study carried out tensile tests of the material specimens which are changed with the combinations of various variables such as the length of shot fiber and mixture ratio of shot fiber and resin. These variables are set to have the material strength equal to one layer of the FRP sheet. As a result, the optimal length of glass and carbon shot fibers were derived into 3.8cm, and the optimal mixture ratio was also deriver into 1:2 from each variable. And also, the thickness of Sprayed FRP to have the strength equal to one layer of FRP sheet was finally calculated.

  • PDF

Effect of Superplasticizer on the Early Hydration Ordinary Potland Cement (고성능감수제가 시멘트 초기 수화에 미치는 영향)

  • Na, Seung-Hun;Kang, Hyun-Ju;Song, Young-Jin;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.387-393
    • /
    • 2010
  • To improve concrete quality one of the most widely used chemical admixtures is polycarboxylate type superplasticizer. Unlike lignosulfonate and naphthalene-sulfonate, it has high dispersion property and excellent sustainable dispersion property for cement and concrete. Thus, polycarboxylate type superplasticizer has been widely used as a high-performance water reducing admixture together with silica fume in high-performance concrete and other applications for the dispersion of high-strength concrete over 100 MPa. However, even though there have been many studied on the dispersion of concrete by the structure of polycarboxylate type superplasticizer, there have a few studied that clarified the relationships between its rheological properties and microstructure properties in the early hydration behavior of ordinary portland cement. To investigate the correlations between the rheological properties and microstructure of cementitious materials with polycarboxylate type superplasticizer, this study experimented on the rheology, pore structure, heat evolution, and consistency in early hydration as well as on the compressive strength by early dispersion characteristics.

A Study on the $Cl^-$ ion property of antiwashout concrete using the superplasticizer agent (고유동화재를 사용한 수중불분리콘크리트의 Cl 이온 특성고찰)

  • 김동석;최재웅;구본창;하재담;엄태형;신연식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.117-122
    • /
    • 1999
  • The antiwashout concrete which is a type of specific concrete is manufactured by using a plenty of superplasticizer with the non-dispersible underwater concrete admixture, and the application of it on construction site is being increased. But when we measure choride ion content by using the potentiographic tester, because it is over total chloride ion content(0.3kg/㎥ under) of Korean Concrete Specification, the claim of construction site is being presented on the quality of antiwashout concrete. Accordingly, hte aim of this study is to verify actual chloride ion content of antiwashout concrete by chloride ion analysis due to chemical admixtures by performance of antiwashout concrete. In conclusion the actual chloride ion content of antiwashout concrete is overestimated by anion($OH^-, SO4^{-2}, S^{-2}, etc) of chemical admixtures, and is proved to be as low as that of ordinary concrete.

  • PDF

Analysis on the Cracking Behavior for Massive Concrete with Age-Dependent Microplane Model (재령효과를 고려한 미소면 모델을 적용한 매스콘크리트의 균열거동 해석)

  • Lee, Yun;Kim, Jin-Keun;Lee, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.591-594
    • /
    • 2005
  • Concrete structure that has been constructed in real field is on multi-axial stress state condition. After placing of concrete, hydration heat and shrinkage of concrete can cause various stress conditions with respect to the restraint level and condition. So, to predict the early age behavior of concrete structure, multi-axial material model is required and microplane model is acceptable. Recently, many studies have been performed on the microplane model, but the model developed up to now has been related to hardened concrete that material property is constant with concrete age. So, it is inappropriate to apply this model immediately to analyze the early age behavior of concrete. In this study, microplane model that can predict early age behavior of concrete was developed and cracking analysis using that was performed to describe cracking behavior for massive concrete sturucture.

  • PDF

Evaluation of Diffusion Property of Latex Modified Concrete (LMC(Latex Modified Concrete)의 염소이온 확산 특성)

  • Park, Sung-Ki;Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.27-37
    • /
    • 2008
  • It is most serious problem which is various occurs from the agricultural concrete structure and off shore concrete structure the problem which it comes to think is deterioration of the concrete which is caused with the corrosion of the reinforcing steel which is caused by with permeation of the water and the sea water. Specially the off shore concrete structure has been deteriorated by the steel reinforcement corrosion. The latex modified concrete(LMC) was adds latex in the plain concrete as the latex has increase the durability of concrete. This study were accomplished to the estimate the diffusion coefficient of LMC, and the time dependent constants of diffusion. The average chloride diffusion coefficient was estimated. Also, the average chloride diffusion coefficient was compared with diffusion coefficient test results of 28 curing days. The test results indicated that the average chloride diffusion coefficient could closely estimate the test results of the diffusion coefficient test results of 28 curing days.

Properties of Self Compacting Concrete Using Viscosity Agent Based on Polysaccharide Derivative (폴리사카라이드계 증점제를 혼합한 고유동 콘크리트의 물성)

  • Choi Jae-Jin;Yoo Jung-Hoon;Shin Do-Cheal;Na Chong-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.45-48
    • /
    • 2005
  • Self compacting concrete has the strong point in capability of concrete to be uniformly filled and compacted in every corners of formwork by its self-weight without vibration during placing. However, powder type self compacting concrete has the weak point in the heat of hydration, the drying shrinkage and the elastic property of concrete etc. Recently viscosity agent has been developed in order to overcome these weaknesses. In this study, self compacting concrete is made with viscosity agent based on polysaccharide derivative in order to develope the normal strength self compacting concrete. Slump flow, loss of slump flow and setting time are measured for comparison with normal concrete. Compressive strength, freezing and thawing test and carbonation test are conducted on normal and self compacting concrete using viscosity agent. In the experiment, we acquired good results in fresh and hardened self compacting concrete using viscosity agent based on polysaccharide derivative.

  • PDF

Modelling of Alkali-Silica Reaction Effects on Mechanical Property Changes of Concrete

  • Kim, Jung Joong;Fan, Tai;Reda Tah, Mahmoud M.;Lim, Nam-Hyoung
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.42-45
    • /
    • 2015
  • Alkali-silica reaction (ASR) is a chemical reaction in concrete that alkalis in cement react with reactive silica in aggregate in the presence of water. When ASR takes place, it produces gels that absorb water and expand. Swelling of ASR gels can damage concrete and cause cracking and volume expansion in concrete structure. In this paper, mechanical consequences of ASR on concrete are simulated by a finite element (FE) analysis. An FE model of concrete is built. The evolution of concrete mechanical properties subjected to ASR is achieved by FE analyses. The constitutive model of concrete is attained via the FE analysis. A case study is used to demonstrate the proposed method. The simulated results using the proposed model are in good agreement with the observations of concrete with ASR reported in the literature. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.

Tension Test of Hybrid Bars with Carbon and Glass Fibers (탄소와 유리 섬유로 제작된 하이브리드 바의 섬유 배치에 따른 인장성능 실험)

  • You Young Jun;Park Ji-Sun;Park Young-Hwan;You Young-Chan;Kim Keung-Hwan;Kim Hyeong-Yeol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.325-328
    • /
    • 2005
  • Fiber Reinforced Polymers are recognized as the alternative materials for solving the problem due to the excellent corrosion-resistant property, light-weight and higher strength than steel. Glass fiber is superior to other fibers from the economical point of view but the mechanical property is not. For this reason, researches to improve the mechanical property of glass fiber reinforced polymer rebar has been conducted and it emerged as a solution to make the bar as a hybrid type with carbon fibers. This paper presents results of experimental program to investigate the scattering effectiveness of carbon fibers in glass FRP bar.

  • PDF

Effect of Adding Gypsum in Blast-Furnace-Based Mortar's Fundamental Properties (이수석고가 고로슬래그 미분말 활용 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Lu, Liang Liang;Kim, Jun Ho;Park, Jun Hee;Huang, Jin Guang;Baek, Byung Hoon;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.137-138
    • /
    • 2013
  • Nowadays, research about using recycled aggregate as alkali activator has been investigated. By the mechanism of Alkali activation, blast furnace slag's potential hydraulis property would be activated. Thee application of this technique is considered as fit for low strength concrete, so it's suitable in concrete secondary production such as bricks and blocks. Aside alkali activator, sulfate could also activate blast furnace slag's potential hydranlis property. In this research, gypsum(CaSO4·2H2O)has been added with blast furnace slag. Fundamental experiment such as flow and strength has been tested to evalnate effect of gypsum's activation property.

  • PDF

The Development of Repair System for RC Members with Damaged by Rebar Corrosion Using Inhibitor with High Nitrite Content (아초산계 방청제 도포에 의한 철근 부식 보수 시스템 공법 개발)

  • 이한승;나정일;박순만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.359-364
    • /
    • 2001
  • The purpose of this study is to develop the repair system for RC members with damaged by rebar corrosion using new corrosion inhibitor which was high nitrite content. In the experiments, the acceleration corrosion test of rebar was conducted using the specimen which was applied by various repair system. As a result, it was confirmed that the new repair system without concrete patching had high anti-corrosion property compared with other repair systems and was very effective as a spray type corrosion inhibitor in concrete containing chloride (0.1% of NaCl).

  • PDF