• Title/Summary/Keyword: concrete products

Search Result 730, Processing Time 0.024 seconds

Physical and Mechanical Properties of Permeable Polymer Concrete Utilizing industrial By-Products

  • Sung, ChanYong;Kim, In Su
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.78-84
    • /
    • 2000
  • Permeable polymer concrete can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study is to explore a possibility of utilizing industrial by-products, a blast furnace slag and a fly ash, as fillers for permeable polymer concrete. Different mixing proportions are tried to find an optimum mixing proportion of permeable polymer concrete. The tests are carried out at 20$\pm$1$^{\circ}C$ and 60$\pm$2$^{\circ}C$ relative humidity. At 7 days of curing, compressive, flexural and splitting tensile strengths and water permeability ranged between 239~285kgf/$\textrm{cm}^2$, 107~133kgf/$\textrm{cm}^2$, 37~46kgf/$\textrm{cm}^2$ and 4.612~5.913$\ell$/$\textrm{cm}^2$/h, respectively. It is concluded that the blast furnace slag and fly ash can be used in permeable polymer concrete.

  • PDF

Reduction of Superplasticizer Dosage in Eco-friendly Ultra-high Performance Concrete by Adopting Industrial by-Products (산업부산물들 혼입에 의한 친환경 초고성능 콘크리트의 유동화제 사용량 감소)

  • Kim, Heeae;Pyo, Sukhoon;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.20-28
    • /
    • 2016
  • Assessment on adequate dosage of superplasticizer in eco-friendly ultra-high performance concrete (UHPC) containing industrial by-products was carried out from the standpoint of workability. Various types of industrial by-products, including blast-furnace slag, coal bottom ash and rapid-cooled electric arc furnace oxidizing slag, were utilized, and the effects of dosage of superplasticizer on the workability and strength of UHPC containing the by-products were evaluated. By utilizing the by-products, the workability of UHPC was improved and required dosage of superplasticizer was reduced. In addition, the material cost for UHPC with by-products was decreased due to reduced dosage of superplasticizer.

Synthesis of DOT Use of Beam End Protection for Extending the Life of Bridges

  • Radlinska, Aleksandra;McCarthy, Leslie Myers;Matzke, James;Nagel, Francis
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.185-199
    • /
    • 2014
  • As the national transportation infrastructure ages and deteriorates, many existing bridges require frequent and costly maintenance and repairs. The objective of this work was to synthesize new and existing types of beam end coatings and treatments that have been proven to extend the life of new and existing concrete and steel bridge beams. A comprehensive literature review, along with online surveys and phone interviews of State department of transportations (DOTs) and coating manufacturers was conducted to gather information about existing and recently developed technologies. The study revealed that while many promising coatings and treatments are offered on the market, there is a lack of readily available laboratory results that would enable direct comparison of the available methods. This finding applies in terms of the coatings' durability and the potential for extending the service life of existing bridges. Most of the interviewed State DOTs' personnel assessed the products listed in respective DOT's Qualified Products Lists as performing 'well'. However, there was significant variability between states in the type of the products used. Among the agencies contacted, none was able to suggest the most promising or advanced products, either for concrete or steel bridge beam end treatments. This suggests that comprehensive laboratory evaluation would be necessary for selecting the best available beam end treatments and coatings.

Products and Execution of Mass Concrete (목동 현대 하이페리온 현장 - 매스 콘크리트 시공사례(B동))

  • 윤재령
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.82-85
    • /
    • 2002
  • 매스 콘크리트 타설전 배합 및 적용 실험을 실시함으로써 현장의 여건에 알맞은 최적의 배합비를 도출하며 실내 배합 실험을 실시하고 배치 플랜트에 적용하여 실제 현장에 실용시킬 수 있다.(중략)

Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature

  • Sahani, Ashok Kr.;Samanta, Amiya K.;Roy, Dilip K. Singha
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.263-275
    • /
    • 2019
  • In the present work, Granulated Blast Furnace Slag (GBFS) and Fly ash (FA) were used as partial replacement of Natural Sand (NS) and Ordinary Portland Cement (OPC) by weight. One control mix, one with GBFS, three with FA and three with GBFS-FA combined mixes were prepared. Replacements were 50% GBFS with NS and 20%, 30% and 40% FA with OPC. Preliminary investigation on development of compressive strength was carried out at 7, 28 and 90 days to ensure sustainability of waste materials in concrete matrix at room temperature. After 90days, thermo-mechanical study was performed on the specimen for a temperature regime of $200^{\circ}-1000^{\circ}C$ followed by furnace cooling. Weight loss, visual inspection along with colour change, residual compressive strength and microstructure analysis were performed to investigate the effect of replacement of GBFS and FA. Although adding waste mineral by-products enhanced the weight loss, their pozzolanicity and formation history at high temperature played a significant role in retaining higher residual compressive strength even up to $800^{\circ}C$. On detail microstructural study, it has been found that addition of FA and GBFS in concrete mix improved the density of concrete by development of extra calcium silicate gel before fire and restricts the development of micro-cracks at high temperature as well. In general, the authors are in favour of combined replacement mix in view of high volume mineral by-products utilization as fire protection.

Prediction of Concrete Fracture Energy using Mix Design Nomogram (Mix Design Nomogram을 이용한 콘크리트 파괴에너지 예측)

  • Kang, Sung-Hoo;Park, Sun-Joon;Jeung, Chul-Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.133-142
    • /
    • 2006
  • The purpose of this study is to predict the fracture energy in accordance with the combination variables by applying the mix design nomogram in ready mixed concrete products. In terms of the experiment for drawing up Mix Design Nomogram, the beam is manufactured based on the mixture table described in the specifications of ready mixed concrete manufacturing company and a three-point bending test suggested in RILEM 50-FMC Committee is performed. As a result, this study makes sure the possibility to apply the mix design nomogram that is possible to predict the fracture energy in ready mixed concrete products and enables one to achieve the automation of the design of mixture for the production of ready mixed concrete products with the development of program using it.

Fundamental Investigation of Functional Property of Concrete Mixed with Functional Materials

  • Lee, Jong-Chan;Lee, Moon-Hwan;Lee, Sae-Hyun;Park, Young-Sin;Park, Jae-Myung
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.165-171
    • /
    • 2006
  • Environment-friendly materials are increasingly used as building construction materials nowadays, and the market share of those is growing. Accordingly, the research and developments in terms of environmental value are progressing steadily now. The main characteristics of environmental products are far-infrared radiation, negative-ion emission, electromagnetic wave shielding, and antimicrobial property. These products are often used in mortar and as spray on the finishing material. Nevertheless, there are hardly any research on the functional properties of concrete, the main material in construction field. Thus, we evaluated such basic properties of concrete as slump, compressive strength and air content while using such functional materials as sericite, wood-pattern sandstone, carbon black and nano-metric silver solution to focus on their functional properties like far-infrared radiation, negative ion emission, electro magnetic wave shielding, and antimicrobial activity in this research. The results indicated that the most useful material in the functional materials was carbon black. Sericite and nano-metric silver solution had a little effect on the functional property. Moreover, although wood-pattern sandstone had very high functional property, it exhibited too low compressive strength to be applied, to concrete as a factory product. Antimicrobial property of nano-metric silver solution in the concrete was not clear demonstrated, but if these specimens were to be aged in $CO_2$ gas for a long time, it might be apparent.

Fundamental Properties of Concrete Block and Brick using Casting foundry Fly Ash (주물공장 플라이애쉬를 혼합한 콘크리트 블록 및 벽돌의 기초적 성질)

  • 김희성;진치섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.87-92
    • /
    • 2001
  • Until now, disposal of casting foundry fly ash generally depends on reclamation. This is the great loss from a point of view saving of resources and utilizing industrial wastes. Therefore, a study on the use of fly ash as a substitute material for construction is necessary in order to utilize industrial wastes, to reduce cost of production, to improve quality in producing concrete products, and to protect environment from pollution. In this study, concrete products(hollow concrete block and concrete brick) using casting foundry fly ash as a substitute materials for cement, are produced. And experiments are conducted based on Korean Industrial Standards. Finally, the used methods of casting foundry fly ash as a substitute materials in industry are presented.