• Title/Summary/Keyword: concrete nozzle

Search Result 26, Processing Time 0.024 seconds

Requirement Analysis Study for Development of 3D Printing Concrete Nozzle for FCP Manufacturing (FCP 제작용 3D 프린팅 콘크리트 노즐 개발을 위한 요구사항 분석연구)

  • Youn, Jong-Young;Kim, Ji-Hye;Kim, Hye-Kwon;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.65-66
    • /
    • 2022
  • In the construction industry, interest in technologies such as 3D Construction Printing (3DCP) is increasing, and research is being conducted continuously. In the case of atypical architecture, different shapes must be implemented, and the introduction of 3D printing technology is intended to solve it. Our researchers are conducting research to produce Free-form Concrete Panel (FCP). It automatically manufactures the FCP's formwork without any error with the design shape. At this time, the concrete nozzle based on the 3D printing technology is developed and the concrete is precisely extruded into the manufactured form to prevent the deformation of the formwork that can occur due to the concrete load. Therefore, in this study, the requirements for the development of 3D printing concrete nozzles for FCP manufacturing are analyzed. Based on the analyzed requirements, the first nozzle was developed. Such equipment is easy to shorten construction period and cost reduction in the atypical construction field, and is expected to be utilized as basic 3D printing equipment.

  • PDF

Development Study on Variable Nozzle For Hypersonic Air Breathing Engine

  • Kojima, Takayuki;Taguchi, Hideyuki;Kobayashi, Hiroaki;Fukiba, Katsuyoshi;Sato, Tetsuya;Hatta, Hiroshi;Goto, Ken;Koyanagi, Jun;Aoki, Takuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.492-498
    • /
    • 2008
  • In this paper are described recent studies about variable nozzles, that are a rectangular type nozzle and an axisymmetric type nozzle, of the precooled turbojet engine(S-engine) which are developed for the demonstration of the key technologies for the propulsion system of the hypersonic airplane and the first stage propulsion of the TSTO space plane. For the rectangular nozzle, three types of C-shaped carbon/carbon composite cowls which includes subscale model of the precooled turbojet engine are fabricated and the fine attachment to the ramp is confirmed. For the firing of the S-engine, stainless steel cowl with concrete heat insulator are fabricated and tested for 20 sec. Axisymmetric variable plug nozzle which is made of C/C material is fabricated and pressurized by the cold flow test. The axisymmetric plug nozzle can be operative up to 0.57 MPa of nozzle inlet pressure.

  • PDF

The Basic Study on the Site Application of the Underwater-Hardening Epoxy Mortar Using RCSS (급냉 제강 슬래그를 이용한 에폭시 수지 모르타르 현장 적용에 관한 기초적 연구)

  • Kawg Eun-Gu;Kang Gee-Woong;Bae Dae-Kyung;Bae Kee-Sun;Chang Won-Seok;Kim Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.405-408
    • /
    • 2005
  • The repair and reinforcement materials of the concrete structure in underwater is use to epoxy mortar for underwater-harding. Because it ensures the separation of material and a fluidity in construction, it is important to epoxy mortar This study dealt with the influence of the using of rapidly-chilled steel slag on flow, nozzle passing time, viscosity, and strength of mortar by experimental design. As results of study, this paper proved that the more the using rate of rapidly chilled steel slag increased, the more this affected the enhancement of flow, the decrease of O-lot, and the development of compressive strength, flexural strength. Also, considering the fluidity, nozzle passing time and strength of mortar, it is desirable to use RCSS300 of rapidly chilled slag.

  • PDF

Developing Design Process of 3D Printing Concrete Mix Proportion (3D 프린팅 콘크리트 배합설계 프로세스에 관한 연구)

  • Chen, Chao;Park, Yoo-Na;Yoo, Seung-Kyu;Bae, Sung-Chu;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.7 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • 3D concrete printing technology builds structural components layer-by-layer with concrete extruded through a nozzle without using forms. This technology can simplify construction processes by optimizing design flexibility, construction time, and cost. Furthermore, the 3D printing technology is easy to make an irregularly shaped and function embedded building(or object) which is difficult to be constructed by conventional construction method. However, the 3D printing concrete is not suitable for current commercial standard and the material itself. It is also difficult to apply it to the construction site due to the lack of initial strength and the nozzle which is clogged during the process. The research of mix proportion design process for 3D printing concrete which differs from the conventional concrete is necessary in order to solve the problems. This paper aims to calculate the 3D printing concrete mix proportion design process based on the mix materials and performance information derived from the previous researches. Therefore, the usage variation range, mutual influence relationship, and the importance priority of the mix proportion are analyzed. Based on this results, the basic design process of 3D printing concrete which contains planning design phase, basic design phase and validating performance phase is suggested. We anticipate to confirm applicability verification about the actual production by referring to this 3D printing concrete mix proportion study. In the future, this study can be utilized for blueprint of the 3D printing concrete mix proportion.

An Experiment on the Manufacture of Free-Form Panel for Analysis of the Requirements of Concrete Extrusion Nozzles (콘크리트 압출 노즐의 요구사항 분석을 위한 비정형 패널 제작 실험)

  • Kim, Hye-Kwon;Youn, Jong-Young;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.91-92
    • /
    • 2023
  • With the development of technology, interest in the implementation of free-form buildings is increasing, and research on producing free-form panels is being conducted accordingly. Since free-form buildings are curved and consist of geometric shapes, there are many problems with the production technology of free-form panels that implement them. Due to the inability to reuse molds, the cost of disposal of construction waste and waste of manpower for assembly increase the construction period and construction cost. To improve these limitations, a 3D printed concrete nozzle for FCP production was developed. However, this technology is not quantitatively extruded according to the shape of the panel, and there is a problem that residues are generated. Therefore, an free-form panel extrusion experiment was conducted to analyze the limitations of existing nozzles and to analyze the requirements for the development of new concrete extrusion nozzles. Existing nozzles were unable to be quantitatively extruded, resulting in errors. Due to the weak pressure of the screw and the inability to adjust the internal pressure, detailed extrusion speed control was impossible, and residue generation in the opening and closing device seemed to be the cause. Therefore, a pump capable of quantitative concrete pressure transfer and a pressure control device for easy extrusion of concrete are required. In addition, it is judged that it is necessary to develop an opening and closing device and an extrusion device that do not generate residues. The results of this study are expected to provide information for FCP production and production and to be a basic study of technologies necessary for the production of free-form building panels.

  • PDF

Buildability of 3D Printed Concrete Structures at Various Nozzle Speeds and Aspect Ratios (노즐이동속도와 변장비에 따른 3D 프린팅 콘크리트 구조물의 시공성)

  • Park, Ji-Hun;Lee, Jungwoo;Joh, Changbin;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.375-382
    • /
    • 2019
  • In this study, an experimental study on the buildability of the structure using the developed printing materials and equipment was performed. Experimental variables included the moving speed of nozzles(=80 and 100mm/s), the revolutions per minute (RPM) of screw in discharge buckets, and the aspect ratio(=1.67 and 5.00) reflecting wall length of the structures. Buildability of the 3D printed concrete structures was analyzed based on the maximum decomposition layer and collapse patterns of the structures according to the experimental variables. The nozzle movement speed of 80mm/s and the aspect ratio of 1.67 were favorable for 3D printing in this study. The collapse process of structure due to uneven layer decomposition was also analyzed through the relative displacement measurement of the lower part of the structure during printing.

Effect of Materials and Construction Conditions on Shotcrete Quality (숏콘크리트 품질에 미치는 재료 및 시공 조건의 영향)

  • 현석훈;한기석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.227-232
    • /
    • 1994
  • Recently, TBM (Tunnel Boring Machince) method for a tunnel construction in domestic is very promisible due to shorten a constrution period. It is very important to increase the efficiency of the shotcrete for the TBM. The major factors influencing the efficienty of shotcrete are materials, mix disign, constrution conditions and skill of nozzle-man. In this paper, first, optimum synthesize conditions for the shotcrete accelerators was explored and early stiffenting mechanisms also studied. Second, TBM method was applied for a real job site using the optimum conditions obtained from a lab scale experiment.

  • PDF

An Application of the Water Mist System for Underground Utility Tunnel (지하구 미분무수 소화설비 적용에 관한 연구)

  • 김운형;김종훈;박승민;김태수;민인홍;전동일;김상욱
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.66-76
    • /
    • 2002
  • This paper includes new nozzle design, basic design factors of water mist system that minimize a thermal damage of cable causing business interruption and applying underground utility tunnel. A underground concrete structure (2.5 m(H)$\times$2.5 m(W)$\times$25 m(D)) is constructed in order to test a nozzle performance. Under the designing fire scenario, critical thermal damage of cable sheath ($400^{\circ}c$) reached within a 2 minutes with unsuppressed fire, but type 1 nozzle (SMD 470 $\mu{m}$) and type 2 nozzle (SMD 650 $\mu{m}$) control cable temperature below $400^{\circ}c$. A system performance and fundamental design factors; K factor, flow rate, spray angle, size distribution, nozzle pressure, spray density are analyzed and proposed for system optimization.

The Fundamental Study on the Properties of Foam for Foamed Concrete (기포 콘크리트용 기포의 특성에 관한 기초 연구)

  • Kawg, Eun-Gu;Kang, Gie-Hyun;Kang, Cheol;Kwon, Ki-Joo;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.680-683
    • /
    • 2004
  • This study is to obtain basic data concerned with properties of foam for foamed concrete and foaming method. Main factors of this study are types of foaming agents, temperature of solution with foaming agents, and types of foam generator. Testing items are size distribution of foam, foaming ratio to solution, and stability of foam. The results of this study were shown as follow. It is optimum condition of foam generator that length/diameter of foaming tube is 2.0, bead size within foaming tube is $4\~6mm$, and nozzle size of foaming tube is 10mm. AES and AOS are good results to produce high quality foam, and stability of foam is good in foaming temperature of $20^{\circ}C$.

  • PDF

A Study on Development of New Repair Method by High Pressure Spray (고압 스프레이 방식 신보수공법의 개발에 관한 연구)

  • Woo, Jong-Tae;Jang, Suk-Hwan;Kim, Yong-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.279-288
    • /
    • 2003
  • This study is the development of method on repairing concrete structure for progressing the durability of reinforced concrete. This method is wet spray method which compress and conduct mortar pre-mixed with polymer powder to hose by high pressure pump and spray it on the section of concrete structure through nozzle made specially. Characters of this method are that materials are selected with the sort of structure and the cause of deterioration and macro pores are removed in repaired section by conducting with high pressure and spraying with high velocity for progressing the durability of concrete structure. This study has carried out that the minimum capacity of rebound was measured with various condition and physical properties of sample made by spray method were estimated in comparing with sample made by previous hand method. Also, properties of long-term have carried out after this method was applied on site. According to experimental study, the capacity of rebound showed below 5% and physical properties of sample made by spray method were superior to that of sample made by hand method and physical and durable properties of long-term showed excellence.