• Title/Summary/Keyword: concrete mortar

Search Result 1,664, Processing Time 0.026 seconds

A Study on the Physical Characteristics of Repair Mortar Using Sepiolite (Sepiolite를 보강섬유로 사용한 단면보수 모르타르의 물리적 특성변화에 관한 연구)

  • Lee, Mun-Hwan;Song, Tae-Hyeob;Lee, Sea-Hyun;Park, Seung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.337-340
    • /
    • 2006
  • Utilize several kinds of reinforcement fibers to control workability and surface crack in occasion of mortar used in dilapidated concrete section repair public law. Polypropylene or poly vinyl alcohol that is hydrophilic fiber etc. is used much usually with this reinforcement fiber. Reinforcement fiber does important action that control crack that enhances coherence between material and happens at dry contraction. In this study, wished to use Sepiorite that inorganic materials and affinity such as cement are excellent nature inorganic world fiber and improve repair mortar performance. In this study, as reinforcement fiber, wished to grasp physical characteristics that uses Sepioraiteu and happens this time and grasp application possibility of concrete's repair mortar.

  • PDF

A Study on the Quality Properties for Using Tailings from the Sangdong Tungsten Mine as Admixture for Concrete. (상동광산 광미를 콘크리트용 혼화재료로 사용하기 위한 품질특성 연구)

  • 최연왕;정문영;정명채;구기정
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.781-786
    • /
    • 2003
  • This study has focused on the possibility for recycling tailings from the Sangdong tungsten mine as admixture for concrete. The XRD(X-ray diffraction analysis) and PSA(Particle size analysis) were performed to find mineralogical characteristics. As a result of XRD analysis, the tailings were composed of quartz, feldspars and muscovites, and C-S-H and quartz were found in cement mortar. As a result of KSLT for cement mortar mixed with tailings, most of heavy metals were determined as below the guide line for waste material. In addition, the setting time and compressive strength of cement mortar mixed with tailings were investigated. It was indicated that the initial and final set were retarded according to increasing replacement. The compressive strength of mortar was decreased with increasing replacement.

  • PDF

The Effect of Aerated Concrete containing Foam Glass Aggregate on the Floor Impact Sound Insulation (발포유리 혼합기포 콘크리트의 바닥충격음 차단성능 영향에 관한 연구)

  • Yun, Chang-Yeon;Jeong, Jeong-Ho;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.414-422
    • /
    • 2013
  • As structure-borne sound, the floor impact sound is one of the serious noises in residential building. Most of heating system applied to the typical Korean residential building is floor heating system which is called ondol. The ondol usually consists of finishing material, mortar with heating coil, light-weight aerated concrete and reinforced concrete. This study focused on the isolation of heavy-weight impact sound and modification of mortar and light-weight aerated concrete. Specifically the glass foam aggregate was added on light-weight aerated concrete. Also, water-cement ratio and amount of cement on mortar were revised. The sound pressure level of heavy-weight impact was measured in reverberation chamber using both bang-machine and impact ball. The size of specimen was 1 m by 1 m. Substitution ratio of glass foam aggregate on light-weight aerated concrete shows relationship with heavy-weight impact sound pressure level. In addition, heavy-weight impact sound pressure level was decreased with increment of water-cement ratio and amount of cement on mortar.

An Experimental Study on the Air Permeabilit Effect on the Carbonation of Mortar and Concrete (모르터 및 콘크리트의 중성화에 영향을 미치는 투기계수에 관한 실험적 연구)

  • 유재강;이강우;심재형;강석표;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.700-703
    • /
    • 2000
  • With respect to durability, the impotance of carbonation lies in the fact that it reduces the pH on the pore water in hardened concrete. However, the carbonation velocity is effected by the water/cement ratio, materials, unit cement weight, porosity, kinds of finishing materials, accuracy of constructing, environmental factors and so on. And the air permeability is closely related to the carbonation velocity because it represents the properties of concrete. This paper presents an experimental investigation on the carbonation effected by air permeability n mortar and concrete. As a result, it was found that the carbonation velocity of concrete is faster than that of mortar and it is possible to predict the carbonation velocity using air permeability.

  • PDF

Comparison of Alkali-Silica Reactivity for Mortar Bar and Concrete Prism Specimens Using Crushed Aggregates in Korea (국내 쇄석골재를 사용한 모르타르 봉 및 콘크리트 각주 시험편의 알칼리-실리카 반응성 비교)

  • Kim, Seong-Kwon;Yun, Kyong-Ku;Hur, In
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.93-99
    • /
    • 2012
  • PURPOSES: The purpose of this study is to compare the alkali-silica reactivity for mortar bar and concrete prism specimens using crushed aggregates of 5 types in Korea. And the alkali-silica reactivity for those aggregates are measured by chemical test method. METHODS: The alkali-silica reactivity for those aggregates was measured by chemical test method of KS F 2545, mortar-bar test of KS F 2546, accelerated mortar-bar test method of ASTM C 1260 and concrete prism test method of ASTM C 1293, relatively. RESULTS: The alkali-silica reactivity for those aggregates was verified by chemical test of KS F 2546 and accelerated mortar-bar test of ASTM C 1260. However, it was not by mortar-bar test of KS F 2546 and concrete prism test of ASTM C 1293. CONCLUSIONS: The above results showed that relationship among the four test methods were very low. The results from 3 types of test methods using cement-aggregate combinations appeared to be different. Because the environmental conditions of test methods for measuring the alkali-silica reactivity such as equivalent alkali content(external source), humidity, temperature, and times were different though the aggregates were same. Moreover, alkali-silica reactivity showed the biggest impact when alkalis were supplied form outside and exposed to environmental conditions. The accelerated mortar-bar test method seems to be most appropriate test method for concrete structures exposed to alkali environment.

Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-performance Mortar (섬유복합재봉(FRP ROD)과 고강도 모르터를 이용한 철근 콘크리트 구조물의 휨 보강공법(MFRI) 공법)

  • Bae Ki-Sun;Park Sing-Hun;Lee Sang-Uk
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.59-65
    • /
    • 2005
  • This report is on the Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-Performance Mortar. The main characteristic of this system is as follow. First, the fiber rods in this system have seven times greater tensile strength than general reinforcing steel bars(re-bar) and the weight is a fifth lighter. Camels coated on the fiber rods' surfaces to improve adhesive strength and pull-out strength. Second, high strength shotcrete mortar is has very good workability and low rebound rate. After installing the Fiber Rods, Shotcrete mortar Is applied or sprayed to finish reinforcement. Finally, MFRI system has excellent fire-resisting performance and sogood tolerance against external environment by inserting fiber rods and reinforcing materials into mortar which has high compressive strength. It is applied to bridge slab, utility box and tunnel of civil engineering works, and beam and slab of building structures.

Effect of Fineness Modulus of Reactive Aggregate on Alkali Silica Reaction

  • Jun, Ssang-Sun;Jin, Chi-Sub
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.119-125
    • /
    • 2010
  • In this study, the effects of the fineness modulus of reactive aggregate on ASR expansion and ASR products have been investigated. The reactive aggregate used was metamorphic aggregate originated from Korea. ASR tests were conducted according to accelerated mortar bar test. The morphology and chemical composition of products formed in mortar bars, 5 years after the mortar bar test had been performed, were studied by scanning electron microscopy equipped with energy dispersive spectroscopy. Test results indicated that ASR expansion of mortar bars decrease in linear proportion to the fineness modulus of reactive aggregate. SEM images indicated that mortar bars showed reactive products formed in cement paste, within air voids and within cracks through particles except for the mortar bar with the fineness modulus of 3.25. The EDS analysis of the reactive products showed presence of silica, calcium and sodium, typical of ASR product composition.

A Study on the Experimental Study on Use Proper of Superplasticizer for Repair Mortar (보수 모르타르용 고성능 유동화제의 사용 적합성에 관한 실험적 연구)

  • Kim, Young-Sam;Song, Tae-Hyeob;Lee, Mun-Hwan;Lee, Sea-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.297-300
    • /
    • 2006
  • Recently, To extend building's life, the use amount of repair mortar has been rapidly increased and naphthalenesulfonic and melanminesulfonic, polycarboxylic superplasticizer etc. are used for repair mortar in large numbers of construction site for efficient work. In this study, it was going to examine the use proper of superplasticizer for repair mortar through the hydrate setting time test and flow test with the mortar combination which replaced by alumina cement and added superplasticizer. As a result, the fluidity of the mortar replaced by alumina cement(10%) and added superplasticizer was dropped down and setting time was shortened. Especially this appearance was more increased on the mortar combination added ploycarboxylic and melanminesulfonic superplasticizer than naphthalensulfunic superplasticizer.

  • PDF

An Experimental Study for Crack Prevention of Floor Mortar (바닥용 모르타르의 균열방지를 위한 실험적 연구)

  • 정재동;김진근;최응규;이칠성;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.202-207
    • /
    • 1996
  • Recently, the mortar crack on floor is very serious in construction field, e.g. the crack due to plastic shrinkage and the crack due to drying shrinkage. To prevent this kind of crack, optimum mix propertions not only satisfying the required workability but also minimizing the unit water content were selected. And the expansion admixtures were used to compensate the shrinkage of mortar. This study shows that water/cement ratio used in construction field is about 64%. Even if we reduce water/cement ratio of mortar by the appropriate use the fine aggregate with high fineness modulus and superplastizer, floor mortar can have the required workability. The equations between mortar flow and water/cement ratio, sand/cement ratio, fineness modulus of fine aggregate were proposed in this study. And this equation may provide available mix proportions of floor mortar.

  • PDF

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.