• Title/Summary/Keyword: concrete flexural member

Search Result 250, Processing Time 0.03 seconds

Effects of Specimen Depth on Flexural Compressive Strength of Concrete (부재의 깊이가 콘크리트의 휨압축강도에 미치는 영향)

  • 이성태;김진근;김장호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.121-130
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to depth ratios (h/c = 1, 2 and 4) which have compressive strength of 55 MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also, the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

Effects of Specimen Depth on Flexural Compressive Strength of Concrete (콘크리트의 휨압축강도에 미치는 부재깊이의 영향)

  • Yi, Seong-Tae;Kim, Jin-Keun;Lee, Yun;Kim, Jang-Ho;Yang, Eun-Ik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.115-120
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to-depth ratios(h/c=1, 2 and 4) which have compressive strength of 55MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

  • PDF

Effects of Specimen Length on Flexural Compressive Strength of Concrete (부재의 길이가 콘크리트의 휨압축강도에 미치는 영향)

  • 김진근;이성태;이태규
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.63-71
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a reinforced concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios (from 1,2,3 and 4) of specimens with compressive strength of 590 kgf/$\textrm{cm}^2$. Results indicate that for the region of h/c <3.0 the reduction in flexural compressive strength with increase of length-to-depth ratios was apparent. A model equation was depth of an equivalent rectangular stress block was larger than that by ACI. It was also founded that the effect of specimen length on ultimate strain was negligible. Finally more general model equation is also suggested.

Flexural Pinching and Energy Dissipation Capacity (휨핀칭과 에너지 소산능력)

  • 박흥근;엄태성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.275-285
    • /
    • 2003
  • Pinching is an important property of reinforced concrete member which characterizes its cyclic behavior. In the present study, numerical studies were performed to investigate the characteristics and mechanisms of pinching behavior and the energy dissipation capacity of flexure-dominated reinforced concrete members. By analyzing existing experimental studies and numerical results, it was found that energy dissipation capacity of a member is directly related to energy dissipated by re-bars rather than concrete that is a brittle material, and that it is not related to magnitude of axial compressive force applied to the member. Therefore, for a member with specific arrangement and amount of re-bars, the energy dissipation capacity remains uniform regardless of the flexural strength that is changed by the magnitude of axial force applied. Due to the uniformness of energy dissipation capacity pinching appears in axial compression member. The flexural pinching that is not related to shear force becomes conspicuous as the flexural strength increases relatively to the uniform energy dissipation capacity. Based on the findings, a practical method for estimating energy dissipation capacity and damping modification factor was developed and verified with existing experiments.

  • PDF

Numerical Analysis on External Strengthening Effects in Aged Structures (사용중인 구조물의 보강효과에 대한 해석적 연구)

  • 신승교;임윤묵;김문겸;박동철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.455-460
    • /
    • 2002
  • In this study, a numerical analysis that can effectively predict the effect of strengthening of cracked flexural members is developed using axial deformation link elements. Concrete and interface between concrete and repair material are considered as quasi-brittle material. Reinforcing bars and reinforcing steel plates are assumed to perform as elasto-plastic materials. Unloading behavior of axial deformation link element is implemented. In the developed numerical model, a flexural member is intentionally cracked by pre-loading, then, the cracked member is repaired using extra elements, and reloaded. The results from analysis of repaired flexural members agrees well with available experiment results. Also, it was shown that the effect of strengthening and the change of failure mode with respect to the time for strengthening and thickness of repair materials. Based on the results, it was determined that the developed numerical model has a good agreement for determining failure modes and effect of strengthening in cracked flexural members. By utilizing the developed numerical analysis, the time and dimension of external strengthening in an existing cracked flexural member with predition of failure mechanism can be determined.

  • PDF

Effects of Specimen Length on Flexural Compressive Strength of Concrete (콘크리트의 휨압축강도에 미치는 부재길이의 영향)

  • 김진근;이성태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.579-584
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios(from 1, 2, 3 and 4) of specimens with compressive strength of 58 MPa. Results indicate that the reduction in flexural compressive strength with increase of length-to-width ratios was apparent. A model equation was derived using regression analyses on the experimental data. It was also founded that the effect of specimen length on ultimate strain was negligible, but its effect of the ultimate load and the displacement at center of specimen was distinct. Finally more general model equation is also suggested.

  • PDF

Size Effect for Flexural Compressive Strength of Concrete (콘크리트의 휨 압축강도의 크기효과)

  • Kim, Jin-Keun;Yi, Seong-Tae;Yang, Eun-Ik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • When the ultimate strength of a concrete flexural member is evaluated, the effect of member size is usually not considered. For various types of loading, however, the strength always decreases with the increment of member size. In this paper the size effect of a flexural compression member is investigated by experiments. For this purpose, a series of C-shaped specimens subjected to axial compressive load and bending moment was tested using three different sizes of specimens with a compressive strength of 528 kg/$cm^2$. According to test results the size effect on flexural compressive strength was apparent, and more distinct than that for uniaxial compressive strength of cylinders. Finally a model equation was derived using regression analyses with experimental data.

Study on Relationship of Flexural Moment-Curvature Based on Bond Property of Reinforced Concrete Member (철근콘크리트 부재의 부착특성을 고려한 휨모멘트-곡률 관계에 관한연구)

  • 장일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.4
    • /
    • pp.97-106
    • /
    • 1991
  • The object of this study is to propose the Flexural moment-curvature relationship based on the bond property between concrete and steel for noncracking zone, to evaluate the flexural displacement of reinforced concrete member. The bond-slip relationship and the strain hardening effect of steel were taken into consideration in order to evaluate the spacing of the cracks and the curvature distribution. Calculated curvature distribution along the longitudinal axis was transformed into equivalent curvature distribution. The flexural displacement was calculated by means of double integrals of the equivalent curvature. Furthermore, 34 beams were tested in order to verify the proposed procedure Calculated values agreed well with the experimental data, and so it is pointed out that proposed method is widely acceptable for the practical evaluation of flexural displacement of reinforced concrete member.

Strength Evaluation of UHPFRC Flexural Member by Analytical Method (해석적 방법에 의한 강섬유 보강 초고성능 콘크리트(UHPFRC) 휨부재의 강도 평가)

  • Park, Woo Jin;Hwang, Hoon Hee
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.55-59
    • /
    • 2013
  • The analytical model was constituted to evaluate the flexural strength of UHPFRC(ultra high performance fiber reinforced concrete) member. The analytical approach was attemped to study the effect of the joint and the result compared with the experimental study to verify the analytical model. The calculated value tends to underestimate about 23%~25% in comparison with the experimental result of the jointed test member because the bond stress between precast UHPFRC and cast-in-place UHPFRC surface is not considered in the analytical model. But in the case of the continuous test member, the analytical model provides reasonable results for the flexural strength of UHPFRC member.

Flexural Strength Estimation of Half-Depth Precast Concrete Composite Slab Manufactured by the Long-Line Method (롱라인 공법으로 제작한 반단면 프리캐스트 콘크리트 합성 슬래브의 휨강도 평가)

  • Choi, Jin-Woo;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.48-56
    • /
    • 2013
  • Prestressed concrete (PSC) members are readly available in civil engineering applications due to the convenience of construction and easy of quality control in the manufacturing process of the member. Especially, half-depth precast concrete composite slab, which is one of the PSC flexural members is developed recently using the long-line method. The half-depth precast concrete composite slabs are composed of the precast concrete and the in-situ concrete placed at the site. In this paper, we present the results of experimental investigations pertaining to the pretensioning efficiency and the flexural behavior of half-depth precast concrete composite slab which is made of precast PSC manufactured by the long-line method. In the long-line method, the pretensioned precast member is manufactured simultaneously, by tensioning tendons at once. In addition, we suggest the equation that can estimate the flexural strength of half-depth precast concrete composite slab reasonably by considering the effects of rebar embedded in the precast PSC flexural member.