• Title/Summary/Keyword: concrete failure model

Search Result 895, Processing Time 0.031 seconds

Failure analysis of prestressed concrete containment vessels under internal pressure considering thermomechanical coupling

  • Yu-Xiao Wu;Zi-Jian Fei;De-Cheng Feng;Meng-Yan Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4504-4517
    • /
    • 2023
  • After a loss of coolant accident (LOCA) in the prestressed concrete containment vessels (PCCVs) of nuclear power plants, the coupling of temperature and pressure can significantly affect the mechanical properties of the PCCVs. However, there is no consensus on how this coupling affects the failure mechanism of PCCVs. In this paper, a simplified finite element modeling method is proposed to study the effect of temperature and pressure coupling on PCCVs. The experiment results of a 1:4 scale PCCV model tested at Sandia National Laboratory (SNL) are compared with the results obtained from the proposed modeling approach. Seven working conditions are set up by varying the internal and external temperatures to investigate the failure mechanism of the PCCV model under the coupling effect of temperature and pressure. The results of this paper demonstrate that the finite element model established by the simplified finite element method proposed in this paper is highly consistent with the experimental results. Furthermore, the stress-displacement curve of the PCCV during loading can be divided into four stages, each of which corresponds to the damage to the concrete, steel liner, steel rebar, and prestressing tendon. Finally, the failure mechanism of the PCCV is significantly affected by temperature.

Numerical simulation of the effect of missile impact on the concrete layers

  • Sarfarazi, Vahab;Abad, Shadman M. Bolban
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.377-384
    • /
    • 2020
  • A two-dimensional particle flow cod (PFC) is used to study the effect of missile impact on the concrete target. For this purpose firstly calibration of numerical model was performed so that tensile strength of numerical models and experimental sample were the same. Secondly, a concrete model was built. The number of concrete layers and the angle of concrete layers related to horizontal axis were changed. Their numbers were 1, 2, 3 and 4. The angles were 0°, 15°, 30°, 45°, 60°, 75° and 90°. A semi-circle missile was simulated at top of the concrete layers. Its velocity in opposite side of Y direction was 100 m/s. three measuring circles were situated at the below the missile in the model to receive the applied force. The load in the missile and measuring circles together with failure pattern were registered at the beginning of the impaction. The results show that concrete layers number and concrete layers angle have important effect on the failure load while the failure pattern was nearly constant in all of the models.

Evaluation of Shear Strength of RC Beams using Strut-and-Tie Model (스트럿-타이 모델을 이용한 세장한 철근콘크리트 부재의 강도평가)

  • Park, Hong-Gun;Eom, Tae-Sung;Park, Chong-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.271-274
    • /
    • 2005
  • Existing strut-and-tie model cannot be applied to analysis of slender beams without shear reinforcement because shear transfer mechanism is not formed. In the present study, a new strut-and-tie model with rigid joint was developed. Basically, concrete strut is modeled as a frame element which can transfer shear force (or moment) as well as axial force. Employing Rankine failure criterion, failure strength due to shear-tension and shear-compression developed in compressive concrete strut was defined. For verification, various test specimens were analyzed and the results were compared with tests. The proposed strut-and-tie model predicted shear strength and failure displacement with reasonable precision, addressing the design parameters such as shear reinforcement, concrete compressive strength, and shear span ratio.

  • PDF

3-D Finite Element Model for Predicting Bending and Shear Failure of RC Beams (철근콘크리트 보의 휨 및 전단파괴 예측의 3차원 유한요소 모델)

  • Cho, Chang-Geun;Ha, Gee-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.109-116
    • /
    • 2010
  • Three-dimensional finite element model for analysis of reinforced concrete members was developed in order to investigate the prediction of bending and shear failure of reinforced concrete beams. A failure surface of concrete in strain space was newly proposed in order to predict accurately the ductile response of concrete under multi-axial confining stresses. Cracking of concrete in triaxial state was incorporated with considering the tensile strain-softening behavior of cracked concrete as well as the cracked shear behavior on cracked surface of concrete caused by aggregate interlocking and, dowel action. By correlation study on failure types of bending and shear of beams, current finite element model was well simulated not only the type of ductile bending failure of under-reinforced beams but also the type of brittle shear failure of no-stirruped reinforced concrete beam.

Layered finite element method in cracking and failure analysis of RC beams and beam-column-slab connections

  • Guan, Hong;Loo, Yew-Chaye
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.645-662
    • /
    • 1997
  • A nonlinear semi-three-dimensional layered finite element procedure is developed for cracking and failure analysis of reinforced concrete beams and the spandrel beam-column-slab connections of flat plates. The layered element approach takes the elasto-plastic failure behaviour and geometric nonlinearity into consideration. A strain-hardening plasticity concrete model and a smeared steel model are incorporated into the layered element formulation. Further, shear failure, transverse reinforcement, spandrel beams and columns are successfully modelled. The proposed method incorporating the nonlinear constitutive models for concrete and steel is implemented in a finite element program. Test specimens including a series of reinforced concrete beams and beam-column-slab connections of flat plates are analysed. Results confirm the effectiveness and accuracy of the layered procedure in predicting both flexural and shear cracking up to failure.

Plasticity Model Using Three Orthogonal Stress Components for Concrete in Compression (압축력을 받는 콘크리트에 대한 세 직교 응력 성분을 이용한 소성 모델)

  • Kim Jae-Yo;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.345-356
    • /
    • 2004
  • A plasticity model was developed to predict the behavioral characteristics of concrete in multiaxial compression. To extend the applicability of the proposed model to concrete in various stress states, a new approach for failure criteria was attempted. A stress was decomposed into one volumetric and two deviatoric components orthogonal to each other. Three failure criteria wire provided independently for each stress component. To satisfy the three failure criteria, the plasticity model using multiple failure criteria was Implemented. Each failure surface was defined by equivalent volumetric or deviatoric plastic strain. To present dilatancy due to compressive damage a non-associative flow nile was proposed. The proposed model was implemented to finite element analysis, and it was verified by comparisons with various existing test results. The comparisons show that the proposed model predicted well most of the experiments by using three independent failure criteria.

Deformation-Based Shear Strength Model for Slender Reinforced Concrete Beams (세장한 철근콘크리트 보의 병형기초 전단강도 모델)

  • Choi Kyoung-Kyu;Park Hong-Gun;Wight James K
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.391-394
    • /
    • 2005
  • A theoretical model was developed to predict the shear strength of slender reinforced concrete beams. The shear force applied to a cross-section of the beam was assumed to be resisted primarily by the compressive zone of intact concrete rather than by the tensile zone. The shear capacity of the cross section was defined based on the material failure criteria of concrete: failure controlled by compression and failure controlled by tension. In the evaluation of the shear capacity, interaction with the normal stresses developed by the flexural moment in the cross section was considered. In the proposed strength model, the shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed strength model was verified by the comparisons to prior experimental results.

  • PDF

Failure Analysis of Deteriorated Reinforced Concrete T-Girder Bridge Subject to Cyclic Loading (정적 반복하중을 받는 노후된 철근콘크리트 T형교의 파괴해석)

  • 송하원;송하원;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.291-301
    • /
    • 1998
  • In this paper, two dimensional and three dimentional modeling techniques are proposed for the failure analysis of deteriorated reinforced concrete T-girder bridge subjected to cyclic loading up to failure. For the nonlinear failure anaysis, a tension stiffening model which can consider degradation of bond between reinforcement and surrounding concrete due to corrision of rebars in old bridge is proposed and a modeling technique for the supports conditions of the bridges which can consider degradation of bearing at supports in old bridge is also proposed, The analysis results along with comparisons with full-scale failure-test results confirm that finite element modeling techniques in this paper can be well applied to the failure analyses of in-situ old reinforced concrete T-girder bridges subjected to cyclic loading and the support condition modeling especially affects the bridge strength significantly.

A modified RBSM for simulating the failure process of RC structures

  • Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.219-229
    • /
    • 2018
  • In this paper, a modified rigid body spring model (RBSM) is proposed and used to analyze the damage and failure process of reinforced concrete (RC) structures. In the proposed model, the concrete is represented by an assembly of rigid blocks connected with a uniform distribution of normal and tangential springs to simulate the macroscopic mechanical behavior of concrete. Steel bars are evenly dispersed into rigid blocks as a kind of homogeneous axial material, and an additional uniform distribution of axial and dowel springs is defined to consider the axial stiffness and dowel action of steel bars. Perfect bond between the concrete and steel bars is assumed, and tension stiffening effect of steel bars is modeled by adjusting the constitutive relationship for the tensile reinforcement. Adjacent blocks are allowed to separate at the contact interface, which makes it convenient and easy to simulate the cracking process of concrete. The failure of the springs is determined by the Mohr-Coulomb type criterion with the tension and compression caps. The effectiveness of the proposed method is confirmed by elastic analyses of a cantilever beam under different loading conditions and failure analyses of a RC beam under two-point loading.

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.