• Title/Summary/Keyword: concrete encased steel

Search Result 115, Processing Time 0.022 seconds

Load carrying capacity of Structural Composite Hybrid System (Green Frame) (철골 프리캐스트 콘크리트 합성보 성능 분석 연구)

  • Hong, Won-Kee;Kim, Sun-Kuk;Kim, Seung-Il
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. The composite beams tested in this study were designed to reduce the depth of the slab and beam. The slabs are constructed on top of the edges of the Structural Composite Hybrid System, instead of on top of the steel flange, decreasing the depth of the beams. When concrete is cast on the metal deck plate located on the edges of the precast concrete, the weight of the concrete slabs and other construction loads must be supported by the contacts between the steel and the precast concrete. This interface must not exhibit bearing failures, shear failures, and failures caused by torque due to the loading of the precast concrete. When the contact area between the concrete and the bottom flange of the steel beam is small, these failures of the concrete are likely and must be prevented. The premature failure of precast concrete must not also be present when the weight of the concrete slabs and other construction loads is loaded. This paper presents a load carrying capacity of Structural Composite Hybrid System in order to observe the failure mode. The symmetrically distributed loading that caused the failure of the composite beam was found. The paper also provides design recommendations of such type of composite structure.

Performance Evaluation of Encased-Concrete Bridge Plate(Deep Corrugated Steel Plate) Member (콘크리트 충전 브릿지 플레이트(대골형 파형강판) 부재의 성능평가)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kim, Tae-Soo;Lee, Hyoung-Ho;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.297-303
    • /
    • 2010
  • The current encased-concrete deep corrugated steel plate has an arch type plate structure, which is a compressive strength-dominant structure that has a small moment due to its arch shape. Therefore, it increases the strength against compression by adding reinforcements to make concrete-filling spaces for increasing the compressive strength and forming cross sections that contain reinforced concrete. In this study, the safety factor of the new-concept encased-concrete bridge plate member was evaluated by comparing the compressive strength obtained from the compressive tests, flexural tests and the design compressive strength determined by using the Canadian Highway Bridge Design Code (CHBDC, 2003), which is a design standard for the encased-concrete bridge plate structures. The results of the safety factor evaluation using the design compressive strength and the test results showed that the safety factor was well above the appropriate value 2.0, which could be adjudged very conservative. If the safety factor based on this study results is considered and applied to the design, economical construction will be possible due to the reduced cross section and construction cost.

Experiment research on seismic performance of prestressed steel reinforced high performance concrete beams

  • Xue, Weichen;Yang, Feng;Li, Liang
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.159-172
    • /
    • 2009
  • Two prestressed steel reinforced high performance concrete (SRC) beams, a nonprestressed SRC beam and a counterpart prestressed concrete beam were tested under low reversed cyclic loading to evaluate seismic performance of prestressed SRC beams. The failure modes, deformation restoring capacity, ductility and energy dissipation capacity of the prestressed SRC beams were discussed. Results showed that due to the effect of plastic deformations of steel beams encased in concrete, the three SRC beams exhibited residual deformation ratios ranging between 0.64 and 0.79, which were apparently higher than that of the prestressed concrete beam (0.33). The ductility coefficients of the prestressed SRC beams and the prestressed concrete beam ranged between 4.65 and 4.87, obviously lower than that of nonprestressed SRC beam (9.09), which indicated the steel beams influenced the ductility little while prestressing resulted in an apparent reduction in ductility. The amount of energy dissipated by the prestressed SRC beams was less than that dissipated by the nonprestressed SRC beam but much more than that dissipated by the prestressed concrete beam.

The Evaluation of the Axial Strength of Composite Column with HSA800 Grade Steel (HSA800 강재를 적용한 합성기둥의 축방향 내력 평가)

  • Lee, Myung Jae;Kim, Cheol Hwan;Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.473-483
    • /
    • 2014
  • According to the Korean Building Code (KBC), the validity of the application of 800MPa grade steel(HSA800) to composite column should be verified by experimental or analytical method. Thus, stub column tests for encased and filled composite members with HSA800 steel were conducted, and axial strength and the validity of design compressive strength equations in KBC were evaluated. The test results show that the equation of the compressive strength of encased composite column member in KBC should be modified in order to use HSA800 steel without any reduction of specified minimum yield strength. For this purpose, it is suggested that the interval of hoop should be narrowed and the effective concrete area should be used. The equation of the compressive strength of filled composite column member in KBC is applicable to filled composite column with HSA800 steel without any modification.

Axial compressive behavior of concrete-encased CFST stub columns with open composite stirrups

  • Ke, Xiaojun;Ding, Wen;Liao, Dingguo
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.399-409
    • /
    • 2021
  • The existing method to improve the coordination performance of the inner and outer parts of concrete-encased concrete-filled steel tube (CFST) composite columns by increasing the volume-stirrup ratio causes difficulties in construction due to over-dense stirrups. Thus, this paper proposes an open polygonal composite stirrup with high strength and high ductility CRB600H reinforced rebar, and seventeen specimens were constructed, and their axial compressive performance was tested. The main parameters considered were the volume-stirrup ratio, the steel tube size, the stirrup type and the stirrup strength. The test results indicated: For the specimens restrained by open octagonal composite stirrups, compared with the specimen of 0.5% volume-stirrup ratio, the compressive bearing capacity increased by 14.6%, 15.7% and 21.5% for volume-stirrup ratio of 0.73%, 1.07% and 1.61%, respectively. For the specimens restrained by open composite rectangle stirrups, compared with the specimen of 0.79% volume-stirrup ratio, the compressive bearing capacity increased by 7.5%, 6.1%, and -1.4% for volume-stirrup ratio of 1.12%, 1.58% and 2.24%, respectively. The restraint ability and the bearing capacity of the octagonal composite stirrup are better than other stirrup types. The specimens equipped with open polygonal composite stirrup not only had a higher ductility than those with the traditional closed-loop stirrup, but they also had a higher axial bearing capacity than those with an HPB300 strength grades stirrup. Therefore, the open composite stirrup can be used in practical engineering. A new calculation method was proposed based on the stress-strain models for confined concrete under different restrain conditions, and the predicted value was close to the experimental value.

Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns

  • Mostafa, Mostafa M.A.;Wu, Tao;Liu, Xi;Fu, Bo
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.583-598
    • /
    • 2021
  • The composite steel reinforced concrete (SRC) columns have been widely used in Structural Engineering due to their good performances. Many studies have been done on the SRC columns' performances, but they focused on the ordinary types with conventional configurations and materials. In this study, nine new types of steel reinforced lightweight aggregate concrete (SRLAC) short columns with cross-shaped (+shaped and X-shaped) steel section were tested under monotonically axial compressive load; the studied parameters included steel section ratio, steel section configuration, ties spacing, lightweight aggregate concrete (LWAC) strength, and longitudinal bars ratio. From the results, it could be found that the specimens with larger ties ratio, concrete strength, longitudinal bars ratio, and steel section ratio achieved great strength and stiffness due to the excellent interaction between the concrete and steel. The well-confined concrete core could strengthen the steel section. The ductility and toughness of the specimens were influenced by the LWAC strength, steel section ratio, and longitudinal bars ratio; in addition, larger ties ratio with smaller LWAC strength led to better ductility and toughness. The load transfer between concrete and steel section largely depends on the LWAC strength, and the ultimate strength of the new types of SRLAC short columns could be approximately predicted, referring to the codes' formulas of ordinary types of steel reinforced concrete (SRC) columns. Among the used codes, the BS-5400-05 led to the most conservative results.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Theoretical and experimental study on shear strength of precast steel reinforced concrete beam

  • Yang, Yong;Xue, Yicong;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • With the aim to put forward the analytical model for calculating the shear capacity of precast steel reinforced concrete (PSRC) beams, a static test on two full-scale PSRC specimens was conducted under four-point loading, and the failure modes and strain developments of the specimens were critically investigated. Based on the test results, a modified truss-arch model was proposed to analyze the shear mechanisms of PSRC and cast-in-place SRC beams. In the proposed model, the overall shear capacity of PSRC and cast-in-place SRC beams can be obtained by combining the shear capacity of encased steel shape with web concrete determined by modified Nakamura and Narita model and the shear capacity of reinforced concrete part determined by compatible truss-arch model which can consider both the contributions of concrete and stirrups to shear capacity in the truss action as well as the contribution of arch action through compatibility of deformation. Finally, the proposed model is compared with other models from JGJ 138 and AISC 360 using the available SRC beam test data consisting of 75 shear-critical PSRC and SRC beams. The results indicate that the proposed model can improve the accuracy of shear capacity predictions for shear-critical PSRC and cast-in-place SRC beams, and relatively conservative results can be obtained by the models from JGJ 138 and AISC 360.

Flexural Capacity of the Profiled Steel Composite Beams with Truss Deck Plate (트러스 데크를 사용한 강판성형 합성보의 휨성능 평가)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jung, Sang Min;Kang, Suk Kuy
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2007
  • Slimfloor composite-beam systems could considerably reduce the story height of a building if the steel beam would be installed deep into the concrete floor slab. However, as the depth of the steel beam's installation is limited, it cannot cope with the various demands of building systems. To address this problem, a profiled steel beam section that can control the depth of the steel beam's and slabs' installation was developed in this study. Presented herein are the results of an experiment that was conducted focusing on the flexural behavior of the partially connected composite beams with profiled steel beams encased in composite concrete slabs. Five full-scale specimens with different slab types, with or without shear connection and reinforcement bars, were constructed and tested in this study. As a result, the shear bond stress without an additional shear connection was found to be $0.20{\sim}0.76N/mm^2$due to the inherent mechanical and chemical bond stress.

An Experimental study on Evaluation of Compressive Strength For Encased-Concrete Corrugated Steel Plate (콘크리트 충전 브릿지 플레이트의 압축강도에 대한 실험적 연구)

  • Sim, Jong-Sung;Lee, Eun-Ho;Park, Sung-Jae;Kim, Hyun-Joong;Kim, Tae-Soo;Park, Ji-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.55-56
    • /
    • 2009
  • We tried to examine the compression characteristics of connection parts, under the consideration of the construction ability and the connection characteristics by compressive strength which may occur during construction.

  • PDF