• Title/Summary/Keyword: concrete encased sections

Search Result 28, Processing Time 0.03 seconds

Experimental study on concrete-encased composite columns with separate steel sections

  • Xiao, Congzhen;Deng, Fei;Chen, Tao;Zhao, Zuozhou
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.483-491
    • /
    • 2017
  • This paper presents an experimental study on the behavior of concrete-encased composite columns with multiseparate steel sections subjected to axial and eccentric loads. Six 1/4-scaled concrete-encased composite columns were tested under static loads. The specimens were identical in geometric dimensions and configurations, and the parameter of this experiment was the eccentricity ratio of the applied load. Each two of the specimens were loaded with 0, 10%, and 15% eccentricity ratios. The capacity, deformation pattern, and failure mode of the specimens were carefully examined. Test results indicate that full composite action between the concrete and the steel sections can be realized even though the steel sections do not connect with one another. The concrete-encased composite columns can develop stable behavior and sufficient deformation capacity by providing enough transverse reinforcing bars. Capacities of the specimens were evaluated based on both the Plain Section Assumption (PSA) method and the superimposition method. Results show that U.S. and Chinese codes can be accurate and safe in terms of bending capacities. Test results also indicate that the ACI 318 and Mirza methods give the best predictions on the flexural stiffness of this kind of composite columns.

Parametric study on lightweight concrete-encased short columns under axial compression-Comparison of design codes

  • Divyah, N.;Prakash, R.;Srividhya, S.;Sivakumar, A.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.387-400
    • /
    • 2022
  • The practice of using encased steel-concrete columns in medium to high-rise structures has expanded dramatically in recent years. The study evaluates existing methodologies and codal guidelines for estimating the ultimate load-carrying characteristics of concrete-encased short columns experimentally. The present condition of composite column design methods was analyzed using the Egyptian code ECP203-2007, the American Institute of Steel Construction's AISC-LRFD-2010, Eurocode EC-4, the American Concrete Institute's ACI-318-2014, and the British Standard BS-5400-5. According to the codes, the axial load carrying characteristics of both the encased steel and concrete sections was examined. The effect of load-carrying capacities in different forms of encased steel sections on encased steel-concrete columns was studied experimentally. The axial load carrying capacity of twelve concrete-encased columns and four conventional reinforced columns were examined. The conclusion is that the confinement was not taken into account when forecasting the strength and ductility of the encased concrete, resulting in considerable disparities between codal provisions and experimental results. The configuration of the steel section influenced the confining effect. Better confinement is achieved with the laced and battened section than with the infilled steel tube reinforced and conventionally reinforced section. The ECP203-2007 code reported the most conservative results of all the codes used.

Ultimate behavior of composite beams with shallow I-sections

  • Gorkem, Selcuk Emre;Husem, Metin
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.493-509
    • /
    • 2013
  • Bending behavior of reinforced concrete slabs encased over shallow I-sections at different levels of compression heads were investigated in present study. 1500 mm long I-sections were used to create composite slabs. Compression heads of monolithic experimental members were encased at different levels into the concrete slabs. Shear connections were welded over some of the I-sections. The testing was carried out in accordance with the principles of four-point loading. Results revealed decreasing load bearing and deflection capacities of composite beams with increasing encasement depths into concrete. Mechanical properties of concrete and reinforcing steel were also examined. Resultant stresses calculated for composite beams at failure were found to be less than the yield strength of steel beams. Test results were discussed with regard to shear and slip effect.

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.

An Experimental Studies on Structural Behavior of Reinforced Concrete Beam-Columns with Enlarged Cross Sections (단면 증설된 보-기둥 부재의 구조성능에 관한 실험적 연구)

  • Shin, Yeong-Soo;Hong, Gi-Suop;Choi, Oan-Chul;Park, Ju-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • The major objects of this study is to investigate experimentally the strengthening effects and post-failure behavior of reinforced concrete beam-columns with enlarged sections. Tests are carried out to evaluate the influences of axial load intensities, thickness of encased steel plates and reinforcing bars in the grouted parts on the structural behavior of the specimens. The test results show that the amount of reinforcing bars and thickness of steel plate significantly affect on the structural behavior. The ultimate moment capacities of reinforced concrete beam-columns encased with 2mm-thick steel plate are significantly increased to about 10 times of those of unstrengthened specimens.

  • PDF

Finite Element Analysis of Inelastic Behavior of SRC Composite Piers (SRC 합성교각의 비탄성거동에 대한 유한요소해석)

  • Shim, Chang-Su;Han, Jung-Hoon;Park, Chang-Kyu;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.269-275
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is one of the most important design criteria. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcement such as hoop ties closely. Concrete encased composite columns can be utilized for bridge piers especially in seismic area. In this paper, finite element analyses are performed to study the nonlinear behavior of concrete encased composite columns with single core steel or multiple steel elements under static and quasi-static loads. The cross-sections of these specimens ate composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcement, encased steel member, and loading axis. Through the comparison between FE analyses and test results, adequate material models for confined concrete and unconfined concrete ate investigated. After getting the proper analysis models for composite columns, several parameters are considered to suggest design considerations on the details of composite piers.

  • PDF

An Experimental Study on the Flexural Strength of Hybrid Beam (하이브리드 보의 휨성능에 관한 실험적 연구)

  • Hong, Sung-Gul;Yang, Dong-Hyun;Lim, Byung-Ho;Ryu, Jae-Chun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.398-401
    • /
    • 2006
  • This study investigates the behaviour of Hybrid Beam with reinforced concrete encased steel center and reinforced concrete end. Two types of encased steel shape and two sections are examined in this study. Test results showed that H-Hybrid beam is stronger than Honey-comb Hybrid beam, and the behaviour of composite beam embedded steel at the elastic state is same as that of simple beam.

  • PDF

Seismic Performance Evaluation of SRC Column by Quasi-Static Test (준정적 실험에 의한 SRC 합성교각의 내진성능 평가)

  • Han, Jung-Hoon;Park, Chang-Kyu;Shim, Chang-Su;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.85-94
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is the most important factor. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcements such as hoop ties closely. Using core steel composite columns is useful as one of the reinforcing RC columns. In this paper, quasi-static tests on concrete encased composite columns with single core steel or multiple steel elements were performed to investigate the seismic performance of the composite columns. Eight concrete-encased composite specimens were fabricated. The cross-sections of these specimens are composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcements, type and number of encased steel member. Through the tests, it was evaluated the ductility of SRC composite specimens. It has become clear from the test results that encased steel elements makes the deformation capacity of the columns to be larger. The displacement ductility and lateral strength of specimen with concrete-encased circular tube were indicated the biggest value.

Elastic-plastic formulation for concrete encased sections interaction diagram tracing

  • Fenollosa, Ernesto;Gil, Enrique;Cabrera, Ivan;Vercher, Jose
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.861-876
    • /
    • 2015
  • Composite sections design consists on checking that the point defined by axial load and bending moment keeps included within the surface enclosed by the section interaction curve. Eurocode 4 suggests a method for tracing this diagram based on the plastic stress distribution method. However curves obtained according to this criterion overvalue concrete encased sections bearing capacity, especially when axial force comes with high bending moment values, so a correction factor is required. This article proposes a method for tracing this diagram based on the strain compatibility method. When stresses on the section are integrated by considering the Navier hypothesis, the use of the materials nonlinear constitutive equations provides curves much more adjusted to reality. This process requires the use of rather complex software which might reveal as too complex for practitioners. Preserving the same criteria of an elastic-plastic stress distribution, this article presents alternative expressions to obtain the failure internal forces in five significant points of the interaction diagram having considered five different positions of the neutral axis. These expressions are simply enough for their practical application. Concordance of curves traced strictly relying on these five points with those obtained by computer assisted stress integration considering the strain compatibility method and even with Eurocode 4 weighted curves will be presented for three different cross-sections and two different concrete strengths, revealing very good results.

Eccentric Axial Loading Test for Concrete-Encased L-section Columns using 800MPa Steel and 100MPa Concrete (800MPa 강재 및 100MPa 콘크리트를 적용한 ㄱ형 강재 매입형 합성기둥의 편심압축실험)

  • Kim, Chang-Su;Park, Hong Gun;Lee, Ho Jun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.209-222
    • /
    • 2013
  • Eccentric axial loading test was performed for concrete-encased columns using 800MPa steel and 100MPa concrete. To maximize the contribution of the high-strength steel, L-shaped steel sections were placed at four corners, and connected to each other by lattices, links, or battens. Compared to a H-section of the same area, the moment-arm and strain of the L-sections are increased. Also, the corner L-sections provide good lateral confinement to concrete core. The test results showed that the peak strength and effective flexural stiffness of the L-section columns were increased by more than 1.4 times those of the H-section column.