Browse > Article
http://dx.doi.org/10.12989/sem.2022.83.3.387

Parametric study on lightweight concrete-encased short columns under axial compression-Comparison of design codes  

Divyah, N. (Department of Civil Engineering, PSG Institute of Technology and Applied Research)
Prakash, R. (Department of Civil Engineering, Alagappa Chettiar Government College of Engineering and Technology)
Srividhya, S. (Department of Civil Engineering, Varuvan Vadivelan Institute of Technology)
Sivakumar, A. (Department of Mechanical Engineering, Varuvan Vadivelan Institute of Technology)
Publication Information
Structural Engineering and Mechanics / v.83, no.3, 2022 , pp. 387-400 More about this Journal
Abstract
The practice of using encased steel-concrete columns in medium to high-rise structures has expanded dramatically in recent years. The study evaluates existing methodologies and codal guidelines for estimating the ultimate load-carrying characteristics of concrete-encased short columns experimentally. The present condition of composite column design methods was analyzed using the Egyptian code ECP203-2007, the American Institute of Steel Construction's AISC-LRFD-2010, Eurocode EC-4, the American Concrete Institute's ACI-318-2014, and the British Standard BS-5400-5. According to the codes, the axial load carrying characteristics of both the encased steel and concrete sections was examined. The effect of load-carrying capacities in different forms of encased steel sections on encased steel-concrete columns was studied experimentally. The axial load carrying capacity of twelve concrete-encased columns and four conventional reinforced columns were examined. The conclusion is that the confinement was not taken into account when forecasting the strength and ductility of the encased concrete, resulting in considerable disparities between codal provisions and experimental results. The configuration of the steel section influenced the confining effect. Better confinement is achieved with the laced and battened section than with the infilled steel tube reinforced and conventionally reinforced section. The ECP203-2007 code reported the most conservative results of all the codes used.
Keywords
composite column; design codes; encased steel; lightweight concrete; load carrying capacity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Eom, T., Hwang, H., Park, H., Lee, C. and Kim, H. (2014), "Flexural test for steel-concrete composite members using prefabricated steel angles", J. Struct. Eng., 140(4), 04013094. https://doi.org/10.1061/(asce)st.1943-541x.0000898.   DOI
2 Prakash, R., Divyah, N., Srividhya, S., Avudaiappan, S., Amran, M., Raman, S.N., Guindos, P., Vatin, N.I. and Fediuk, R. (2022a), "Effect of steel fiber on the strength and flexural characteristics of coconut shell concrete partially blended with fly ash", Mater., 15(12), 4272. https://doi.org/10.3390/ma15124272.   DOI
3 Rong, C. and Shi, Q. (2020), "Behaviour of angle steel frame confined concrete columns under axial compression", Constr Build Mater., 241, 118034. https://doi.org/10.1016/j.conbuildmat.2020.118034.   DOI
4 Elsayed, M., Tayeh, B.A., Elmaaty, M.A. and Aldahshoory, Y. (2022), "Behaviour of RC columns strengthened with ultra-high performance fiber reinforced concrete (UHPFRC) under eccentric loading", J. Build. Eng., 47, 103857. https://doi.org/10.1016/j.jobe.2021.103857.   DOI
5 Ibrahim, O.M.O. and Tayeh, B.A (2020), "Combined effect of lightweight fine aggregate and micro rubber ash on the properties of cement mortar", Adv. Concrete Constr., 10(6), 537-546. https://doi.org/10.12989/acc.2020.10.6.537.   DOI
6 Gautham, A. and Sahoo, D.R. (2022), "Performance of src column- RC beam joints under combined axial and cyclic lateral loadings", Eng. Struct., 260, 114218. https://doi.org/10.1016/j.engstruct.2022.114218.   DOI
7 Gimenez, E., Adam, J.M., Ivorra, S. and Calderon, P.A. (2009), "Influence of strips configuration on the behaviour of axially loaded RC Columns strengthened by steel angles and strips", Mater. Des., 30(10), 4103-4111. https://doi.org/10.1016/j.matdes.2009.05.01.   DOI
8 Feng, P., Cheng, S., Bai, Y. and Ye, L. (2015), "Mechanical behavior Of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression", Compos. Struct., 123, 312-324. https://doi.org/10.1016/j.compstruct.2014.12.053.   DOI
9 Gjelsvik, A. (1991), "Stability of built-up columns", J. Eng. Mech., 117(6), 1331-1345. https://doi.org/10.1061/(asce)0733-9399(1991)117:6(1331)   DOI
10 Weng, C. and Yen, S. (2002), "Comparisons of concrete-encased composite column strength provisions of ACI code and AISC specification", Eng. Struct., 24(1), 59-72. https://doi.org/10.1016/s0141-0296(01)00067-0.   DOI
11 Hamada, H.M., Alattar, A.A., Yahaya, F.M., Muthusamy, K. and Tayeh, B.A. (2021), "Mechanical properties of semi-lightweight concrete containing nano-palm oil clinker powder", Phys. Chem. Earth, Part. A/B/C, 121, 102977. https://doi.org/10.1016/j.pce.2021.102977.   DOI
12 Kim, C., Park, H., Chung, K. and Choi, I. (2012), "Eccentric axial load testing for concrete-encased steel columns using 800 MPA steel and 100 MPa concrete", J. Struct. Eng., 138(8), 1019-1031. https://doi.org/10.1061/(asce)st.1943-541x.0000533.   DOI
13 Montuori, R. and Piluso, V. (2009), "Reinforced concrete columns strengthened with angles and battens subjected to eccentric load", Eng. Struct., 31(2), 539-550. https://doi.org/10.1016/j.engstruct.2008.10.005.   DOI
14 Griffis, L.G. (1986), "Some design considerations for composite-frame structures", Eng. J., AISC, 23, 59-64.   DOI
15 Hadi, M.N., Alhussainy, F. and Sheikh, M.N. (2017), "Behavior of self-compacting concrete columns reinforced longitudinally with steel tubes", J. Struct. Eng., 143(6), 04017024. https://doi.org/10.1061/(asce)st.1943-541x.0001752.   DOI
16 Hognestad, E. (1951), "A study of combined bending and axial load in reinforced concrete members", University of Illinois, Urbana, USA.
17 Lai, B., Liew, J.R. and Xiong, M. (2019), "Experimental study on high strength concrete encased steel composite short columns", Constr. Build Mater., 228, 116640. https://doi.org/10.1016/j.conbuildmat.2019.08.021.   DOI
18 Lee, K. and Bruneau, M. (2008), "Seismic vulnerability evaluation of axially loaded steel built-up laced members i: Experimental results", Earthq. Eng. Eng. Vib., 7(2), 113-124. https://doi.org/10.1007/s11803-008-0831-x.   DOI
19 Isleem, H.F., Tayeh, B.A., Alaloul, W.S., Musarat, M.A. and Raza, A. (2021), "Artificial Neural Network (ANN) and finite element (FEM) models for GFRP-reinforced concrete columns under axial compression", Mater., 14(23), 7172. https://doi.org/10.3390/ma14237172.   DOI
20 Hwang, H., Eom, T., Park, H. and Lee, S. (2016), "Axial load and cyclic lateral load tests for composite columns with steel angles", J. Struct. Eng., 142(5), 04016001. https://doi.org/10.1061/(asce)st.1943-541x.0001452.   DOI
21 Khan, M., Rana, M.M., Zhang, Y. and Lee, C. (2020), "Compressive behaviour of engineered cementitious composites and concrete encased steel composite columns", J. Constr. Steel Res., 167, 105967. https://doi.org/10.1016/j.jcsr.2020.105967.   DOI
22 Kim, C., Park, H., Chung, K. and Choi, I. (2014), "Eccentric axial load capacity of high-strength steel-concrete composite columns of various sectional shapes", J. Struct. Eng., 140(4), 04013091. https://doi.org/10.1061/(asce)st.1943-541x.0000879   DOI
23 Lai, B., Liew, J.R. and Hoang, A.L. (2019), "Behavio.r of high strength concrete encased steel composite stub columns with C130 concrete and S690 steel", Eng. Struct., 200, 109743. https://doi.org/10.1016/j.engstruct.2019.109743.   DOI
24 Lee, C., Khan, M., Zhang, Y. and Rana, M.M. (2020), "Engineered cementitious composites (ECC) encased concrete-steel composite stub columns under concentric compression", Struct., 24, 386-399. https://doi.org/10.1016/j.istruc.2020.01.023.   DOI
25 Bhartiya, R., Oinam, R.M., Sahoo, D.R. and Utkarsh, K. (2021), "Modified confinement model for monotonic axial behavior of concrete-filled tubular columns", J. Constr. Steel Res., 180, 106570. https://doi.org/10.1016/j.jcsr.2021.106570.   DOI
26 Amin, M., Tayeh, B.A. and Agwa, I.S. (2020), "Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures", Case Stud. Constr. Mater., 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459.   DOI
27 Badalamenti, V., Campione, G. and Mangiavillano, M.L. (2010), "Simplified model for compressive behavior of concrete columns strengthened by steel angles and strips", J. Eng. Mech., 136(2), 230-238. https://doi.org/10.1061/(asce)em.1943-7889.0000069.   DOI
28 Bhartiya, R. and Sahoo, D.R. (2021), "Prediction of axial compression behavior of rectangular RCFST columns with confining ties", J. Constr. Steel Res., 186, 106920. https://doi.org/:10.1016/j.jcsr.2021.106920.   DOI
29 Chen, C. and Lin, N. (2006), "Analytical model for predicting axial capacity and behavior of concrete encased steel composite stub columns", J. Constr. Steel Res., 62(5), 424-433. https://doi.org/10.1016/j.jcsr.2005.04.021.   DOI
30 Dar, M.A., Sahoo, D.R., Pulikkal, S. and Jain, A.K. (2018), "Behaviour of laced built-up cold-formed steel columns: Experimental investigation and numerical validation", Thin Wall. Struct., 132, 398-409. https://doi.org/10.1016/j.tws.2018.09.012.   DOI
31 Divyah, N., Thenmozhi, R. and Neelamegam, M. (2020a), "Experimental and numerical analysis of battened built-up lightweight concrete encased composite columns subjected to axial cyclic loading", Lat. Am. J. Solid. Struct., 17(3), 1-15. https://doi.org/10.1590/1679-78255745.   DOI
32 Sahoo, D.R. and Rai, D.C. (2007), "Built-up battened columns under lateral cyclic loading", Thin Wall. Struct., 45(5), 552-562. https://doi.org/10.1016/j.tws.2007.02.016.   DOI
33 Divyah, N., Thenmozhi, R., Neelamegam, M. and Prakash, R. (2020b), "Characterization and behavior of basalt fiber-reinforced lightweight concrete", Struct. Concrete, 22(1), 422-430. https://doi.org/10.1002/suco.201900390.   DOI
34 El Aghoury, M., Salem, A., Hanna, M. and Amoush, E. (2013), "Ultimate capacity of battened columns composed of four equal slender angles", Thin Wall. Struct., 63, 175-185. https://doi.org/10.1016/j.tws.2012.07.019.   DOI
35 EN 1994-1-1 (2004), Eurocode 4, Design of Composite Steel and Concrete Structures.
36 Liang, C., Chen, C., Weng, C., Yin, S.Y. and Wang, J. (2014), "Axial compressive behavior of square composite columns confined by multiple spirals", J. Constr. Steel Res., 103, 230-240. https://doi.org/10.1016/j.jcsr.2014.09.006.   DOI
37 Srividhya, S., Vidjeapriya, R. and Neelamegam, M. (2021), "Improving mechanical and durability properties of hypo sludge concrete with basalt fibres and SBR latex", Adv. Concrete Constr., 12(4), 327-337. https://doi.org/10.12989/acc.2021.12.4.327.   DOI
38 Munish, S., Ramalingam, V., Srinivasan, R., Gopinath, V., Ramanareddy, Y. and Ramanareddy, Y. (2020), "UNI axial compression behaviour of lightweight expanded clay aggregate concrete cylinders confined by perforated steel tube and GFRP wrapping", Rev. Constr., 19(3), 200-212. https://doi.org/10.7764/rdlc.19.3.200-212.   DOI
39 Prakash, R., Raman, S.N., Subramanian, C. and Divyah, N. (2022b), "Eco-friendly fiber-reinforced concretes", Handbook of Sustainable Concrete and Industrial Waste Management, 109-145. https://doi.org/10.1016/b978-0-12-821730-6.00031-0.   DOI
40 Prakash, R., Thenmozhi, R. and Sudharshan, N.R. (2019), "Characterization of eco-friendly steel fibre reinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement", Struct. Concrete, 21(1), 1-11. https://doi.org/10.1002/suco.201800355.   DOI
41 Samanta, A. and Paul, A. (2013), "Evaluation of current design practices on estimation of axial capacity of concrete encased steel composite stub columns: A review", J. Civil Eng. Arch., 7(9), 1080. https://doi.org/10.17265/1934-7359/2013.09.004.   DOI
42 Soliman, K., Arafa, A. and Elrakib, T.M. (2013), "Review of design codes of concrete encased steel short columns under axial compression", HBRC J., 9(2), 134-143. https://doi.org/10.1016/j.hbrcj.2013.02.002.   DOI
43 Mirza, S.A. and Lacroix, E.A. (2004), "Comparative strength analyses of concrete-encased steel composite columns", J. Struct. Eng., 130(12), 1941-1953. https://doi.org/10.1061/(asce)0733-9445(2004)130:12(1941).   DOI
44 Yee, K., Shakir-Khalil, H. and Taylor, R. (1982), "Design expressions for a new type of composite column", J. Constr. Steel Res., 2(2), 26-32. https://doi.org/10.1016/0143-974x(82)90023-2.   DOI
45 Tayeh, B.A., Naja, M.A., Shihada, S. and Arafa, M. (2019), "Repairing and strengthening of damaged rc columns using thin concrete jacketing", Adv. Civil Eng., 2019, Article ID 2987412. https://doi.org/10.1155/2019/2987412.   DOI
46 Shanmugam, N. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080. https://doi.org/10.1016/s0143-974x(01)00021-9.   DOI
47 El-Tawil, S. and Deierlein, G.G. (1999), "Strength and ductility of concrete encased composite columns", J. Struct. Eng., 125(9), 1009-1019. https://doi.org/10.1061/(asce)0733-9445(1999)125:9(1009).   DOI
48 Lai, B., Liew, J.R., Venkateshwaran, A., Li, S. and Xiong, M. (2020), "Assessment of high-strength concrete encased steel composite columns subject to axial compression", J. Constr. Steel Res., 164, 105765. https://doi.org/10.1016/j.jcsr.2019.105765.   DOI
49 Sharmila, S., Praveen Kumar, S. and Hafis Muhammed, M.K. (2022), "Investigation on GFRP pultruded tube confined double skin tubular columns under axial loading", Mater. Today: Proc., https://doi.org/10.1016/j.matpr.2022.04.497.   DOI
50 Poon, E.D. (2001), "Effect of column retrofitting on the seismic response of concrete frames", National Library of Canada, Ottawa, Canada.
51 Wang, X., Qi, Y., Sun, Y., Xie, Z. and Liu, W. (2019), "Compressive behavior of composite concrete columns with encased frp confined concrete cores", Sensor., 19(8), 1792. https://doi.org/10.3390/s19081792.   DOI
52 ACI 318 (2014), Building Code Requirements for Reinforced Concrete, American Concrete Institute, Detroit.
53 Tawfik, T.A., AlSaffar, D.M., Tayeh, B.A., Metwally, K.A. and ElKattan, I.M. (2021), "Role of expanded clay aggregate, Metakaolin and silica fume on the of modified lightweight concrete properties", Geosyst. Eng., 24(3), 145-156. https://doi.org/10.1080/12269328.2021.1887002.   DOI
54 Tayeh, B.A., Hakamy, A., Amin, M., Zeyad, A.M. and Agwa, I.S. (2022), "Effect of air agent on mechanical properties and microstructure of lightweight geopolymer concrete under high temperature", Case Stud. Constr. Mater., 16, e00951. https://doi.org/10.1016/j.cscm 2022.e00951   DOI
55 Tayeh, B.A., Zeyad, A.M., Agwa, I.S. and Amin, M. (2021), "Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete", Case Stud. Constr. Mater., 15, e00673. https://doi.org/10.1016/j.cscm 2021.e00673.   DOI
56 Vijayalakshmi, R. and Ramanagopal, S. (2020), "Experimental investigation into banana fibre reinforced lightweight concrete masonry prism sandwiched with GFRP sheet", Civil Environ. Eng. Rep., 30(2), 15-31. https://doi.org/10.2478/ceer-2020-0017.   DOI
57 ECP 203 (2007), Egyptian Code of Practice for Design and Construction of Concrete Structures, Housing and Building National Research Center.
58 Agwa, I.S., Omar, O.M., Tayeh, B.A. and Abdelsalam, B.A. (2020), "Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete", Constr Build Mater., 235, 117541. https://doi.org/10.1016/j.conbuildmat.2019.117541.   DOI
59 AISC-LRFD (2010), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illinois.
60 BS 5400-5 (2002), Code of Practice for Design of Composite Bridges, Part 5.