• Title/Summary/Keyword: concrete durability.

Search Result 2,147, Processing Time 0.024 seconds

Estimation on Durability of 80MPa High Strength Concrete for Lotte Town in Pusan (부산 롯데타운용 80MPa급 초고강도 콘크리트의 내구성 평가)

  • Yoo, Seung-Yeup;Koo, Ja-Sul;Park, Eui-Soon;Kim, Gang-Ki;Kim, Jung-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.307-308
    • /
    • 2009
  • The ultra high strength concrete classed 80 MPa for Lotte Town at pusan has many hydrated materials due to low water to binder ratio and high admixture contents and improved void structure caused by C-S-H gel corresponding to pozzolan and latent hydraulicity of FA and BS. Moreover, durability of the concrete is superior because there was no penetration of carbon dioxide, chloride and chloric ion caused by its fine internal constitution.

  • PDF

The Experimental Study on the Durability of the 70, 100MPa Grade High Strength Concrete with the Land Sand (육상모래를 사용한 70, 100MPa급 고강도 콘크리트의 내구특성에 관한 실험적 연구)

  • Park, Jung-Jun;Ahn, Gi-Hong;Ryu, Gum-Sung;Kang, Su-Tae;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.201-202
    • /
    • 2010
  • In this Study, we manufactured the 70, 100MPa grade high strength concrete with the land sand by batcher plant in the field. In order to verify attainment of design compressive strength and the durability of the manufactured concretes we examined the tests such as compressive strength test, freeze-thaw test, carbonation test, test for concrete's ability to resist chloride ion penetration.

  • PDF

A Study on the Strength and Drying Shrinkage Crack Control Properties of Polypropyl (폴리프로필렌 합성섬유보강 콘크리트의 강도 특성 및 건조수축균열제어 특성에 관한 연구)

  • 오병환;백상현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.146-152
    • /
    • 1996
  • Polypropylene fiber reinforced mortar and concrete as civil material or architectural material have been used in America and British etc, and have been researched. Polypropylene fibers have many advantages in many points ; in economical costs, chemical stability and durability. It has been reported that polypropylene fiber can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. This study has been performed to obtain the properties of polypropylene fiber reinforced concrete such as compressive strength, flexural strength, toughness, slump, drying shrinkage crack and drying shrinkage characteristics. The test variables are fiber contents, fiber length, fiber types, and so on. From the results of this study, we can expect the effects of the admixtures of polypropylene fiber about strength and drying shrinkage properties in concrete and mortar.

  • PDF

An Experimental Study on the Carbonation of concrete using various Admixture Additives (각종 혼합재를 첨가한 콘크리트의 중성화에 관한 실험적 연구)

  • 최광윤;배수환;장재동;이도헌;윤재환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.787-792
    • /
    • 2003
  • The purpose of this study is to suggest the fundamental data of durability which effects on the Carbonation of concrete by adding various admixture additives. Thus, We have experimented the accelerated test on the concrete blending which was admixed by blast furnace slag, fly-ash, silica fume , durability amelioration and it was cured 7weeks after twenty eight days water curing. The result of this experiment is that Carbonation speed increased extremely when water cement ratio went up, and by growing of replace cement ratio of admixture additives. The specimen which was added fly-ash, blast furnace slag, silica fume has the faster Carbonation speed than the specimen which was not added admixture additives. All of these specimen, fly-ash has the fastest progress speed.

  • PDF

A Study on the Flexural Toughness of Steel Fiber Reinforced Recycled Concrete (강섬유 보강 재생 콘크리트의 휨인성에 관한 연구)

  • Koo, Bong-Kuen;Kim, Tae-Bong;Kim, Chang-Woon;Park, Jae-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.161-169
    • /
    • 2000
  • Recycled aggregates were generated when concrete structures were dismembered. However, in concrete structures, because of durability, strength and toughness, recycled aggregates don't use generally. This study was done to use recycled aggregate in concrete structures. Problems of durability, strength, and toughness were caused troubles, when recycled aggregates were used, were solved as steel fibers and additives were added. Of course, steel fiber length, steel fiber contents, additive substitution, and recycled aggregate substitution were variables of this study. After flexural specimens($15{\times}15{\times}70cm$) with notch(45mm) were fabricated, basic strength tests were done and toughness was estimated using fracture mechanics parameters. The results suggest that JIC is a promising fracture criterion for all of these, while KIC(or GIC) almost certainly are not.

  • PDF

A Study on Carbonation Progress of Concrete After Surface Repair method for remodeing apartment (아파트 리모델링을 위한 표면보수공법후 콘크리트의 탄산화 진행에 관한 연구)

  • Lee, Hyung-Min;Sung, Myung-Jin;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.15-16
    • /
    • 2014
  • As the importance of maintenance of reinforced concrete structure recently has emerged, the attention of durability of structure has been increasing. There are many studies about durability decline especially due to the carbonation. In order to study carbonation progress after surface repair of carbonated concrete, each carbonation penetration velocity from different repair materials of concrete structure is compared through the experiment of carbonation accelerating CO2 concentration to 100%. As carbonation infiltration progress is predicted through this study, the counterplan of service life evaluation will be prepared on selection of repair materials of concrete structure.

  • PDF

Evaluation of Freezing-thawing Resistance by Sea water with Variation of micropores of slag concrete (슬래그 콘크리트의 미세 공극구조 변화에 따른 해수 동결융해 저항성능 평가)

  • Song, Gwon-Yong;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Kim, Hong-Seop;Han, Sang-Hyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.129-130
    • /
    • 2014
  • In the case of concrete structures which have been recently exposed to the marine environment, durability is greatly reduced by the freezing-thawing action. When it is used by appropriately replacing the ground granulated blast-furnace slag(GGBS) that is a industrial by-product, the concrete structure of marine environment is known to have a durability to freezing-thawing resistance. In this experiment, micropore in accordance with a replacement ratio of GGBS was confirmed to show different results respectively. The freeze-thaw resistance was showed different aspects respectively because it is different the amount of water in the pore due to the difference of micropore. Therefore, in this study, the freezing-thawing resistance of sea water by variation of micropores of slag concrete had been evaluated.

  • PDF

Diffusivity of Chloride Ion of Composite Slag Aggregate Replacement Concrete (복합슬래그 골재 치환 콘크리트 염소이온 확산 특성)

  • Park, Dong-Cheon;Lee, Jun-Hae;Kim, Yong-Ro;Song, Yong-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.147-148
    • /
    • 2019
  • Lack of fine aggregate is adversely affecting the quality of concrete. Due to lack of land sand, EZZ sea sand has been used. However, the use of sea sand is also difficult because of the opposition of fishermen. The purpose of this study was to analysis the effect of slag fine aggregate to durability and compressive strength of concrete. The concrete compressive strength and durability were assessed to derive a proper mix ratio of fine aggregate.

  • PDF

Performance evaluation of binary blends of Portland cement and fly ash with complex admixture for durable concrete structures

  • Yang, Dingyi;Sun, Wei;Tan, Yongquan
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.381-388
    • /
    • 2005
  • This paper presents the results of a study on binary blends of Portland cement and fly ash with complex admixture used for the concrete structures to meet specific performance objectives in east coastal area of China. The concretes were evaluated for workability, strength, water permeability, drying shrinkage, sulfate resistance and electrical resistance. Environmental Scanning Electron Microscopy (ESEM) was used to examine the microstructure of concrete made by complex admixture compared with control batches without complex admixture. The combined efforts of fly ash and complex admixture led to an improvement in the workability, strength and durability.

Probabilistic evaluation of chloride ingress process in concrete structures considering environmental characteristics

  • Taisen, Zhao;Yi, Zhang;Kefei, Li;Junjie, Wang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.831-849
    • /
    • 2022
  • One of the most prevalent causes of reinforced concrete (RC) structural deterioration is chloride-induced corrosion. This paper aims to provide a comprehensive insight into the environmental effect of RC's chloride ingress process. The first step is to investigate how relative humidity, temperature, and wind influence chloride ingress into concrete. The probability of initiation time of chloride-induced corrosion is predicted using a probabilistic model that considers these aspects. Parametric analysis is conducted on several factors impacting the corrosion process, including the depth of concrete cover, surface chloride concentration, relative humidity, and temperature to expose environmental features. According to the findings, environmental factors such as surface chloride concentration, relative humidity and temperature substantially impact on the time to corrosion initiation. The long- and short-distance impacts are also examined. The meteorological data from the National Meteorological Center of China are collected and used to analyze the environmental characteristics of the chloride ingress issue for structures along China's coastline. Finally, various recommendations are made for improving durability design against chloride attacks.