• Title/Summary/Keyword: concrete durability.

Search Result 2,147, Processing Time 0.039 seconds

A Study of Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Immersion Condition (인공해수 침지조건에 따른 부식촉진시험과 염화물침투해석에 대한 연구)

  • Park, Sang-Soon;Jeong, Ji-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2014
  • Steel reinforcement buried in concrete structure in submerged zone does not easily become corroded due to lack of dissolved oxygen. For that reason, accelerated corrosion test in submerged state is performed with an electrochemical method, which is not suitable for actual corrosion mechanism and makes it difficult to find relevance with long-term behavior. In this study, accelerated corrosion test was performed with the temperature and chloride concentration as main variables in order to establish a method for accelerated corrosion test in submerged zone. Corrosion was determined by the result of reinforcement corrosion monitoring based on galvanic potential measurement and half-cell potential method. The accelerated corrosion test result showed that temperature had the most dominant influence. To determine the chloride content, chloride concentration by depth in the test sample was measured. With the same conditions, chloride penetration interpretation was performed by DuCOM, a FEM durability interpretation program. Also, a test was performed to measure dissolved oxygen according to soaking conditions of artificial seawater, which was used for verifying the validity of the accelerated corrosion test result.

Probabilistic Analysis of Repairing Cost Considering Random Variables of Durability Design Parameters for Chloride Attack (염해-내구성 설계 변수에 변동성에 따른 확률론적 보수비용 산정 분석)

  • Lee, Han-Seung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • Repairing timing and the extended service life with repairing are very important for cost estimation during operation. Conventionally used model for repair cost shows a step-shaped cost elevation without consideration of variability of extended service life due to repairing. In the work, RC(Reinforced Concrete) Column is considered for probabilistic evaluation of repairing number and cost. Two mix proportions are prepared and chloride behavior is evaluated with quantitative exterior conditions. The repairing frequency and cost are investigated with varying service life and the extended service life with repairing which were derived from the chloride behavior analysis. The effect of COV(Coefficient of Variation) on repairing frequency is small but the 1st repairing timing is shown to be major parameter. The probabilistic model for repairing cost is capable of reducing the number of repairing with changing the intended service life unlike deterministic model of repairing cost since it can provide continuous repair cost with time.

Experimental Verification of Reinforced Concrete Beam with FRP Rebar (FRP 보강콘크리트 보의 휨거동에 관한 실험적 연구)

  • Oh, Hong Seob;Ahn, Kwan-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.93-100
    • /
    • 2008
  • The use of fiber reinforced polymer (FRP) composites is significantly growing in construction and infrastructure applications where durability under harsh environmental conditions is of great concern. In order to examine the applicability of FRP rebar as a reinforcement in flexural member, flexural tests were conducted. 12 beams with different FRP materials such as CFRP, GFRP and Hybrid FRP and reinforcement ratio were tested and analyzed in terms of failure mode, moment-deflection, flexural capacity, ductility index and sectional strain distribution. The test results were also compared with the theoretical model represented in ACI 440.1R06. Test results indicate that the flexural capacity of the beams reinforced by FRP bars can be accurately predicted using the ultimate design theory. They also show that the current ACI model for computing the deflection overestimates the actual deflection of GFRP series and underestimates the deflection of CFRP series.

Evaluation of Corrosion Resistance with Grout Type and Tendon (그라우트 품질을 고려한 텐던의 부식저항성 평가)

  • Ryu, Hwa-Sung;An, Ki-Hong;Koh, Kyung-Taek;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.76-82
    • /
    • 2018
  • Grout in duct is very effective protection from tendon corrosion in PSC(Prestressed Concrete) structure. In the work, durability and mechanical tests are performed for two types of grout which are conventionally used one and the improved grout with reduced w/c (water to cement) ratio and silica fume. Tendon system with 1000mm height is prepared and various tests including strength, flow, absorption, and bleeding ratio are conducted. ICM(Impressed Current Method) is adopted for corrosion acceleration in tendon with 12.7mm diameter inside grout. For 2 and 4 days, corrosion acceleration is performed for 2 different type of grout and corrosion amount is investigated. The improved grout shows higher compressive strength by 10 MPa and lower absorption ratio by 50% than the conventional one. It also provides an excellent corrosion reduction to 39.8 %~48.2 % for 2~4 days of acceleration period.

Waste Elimination in Construction Process using Value Stream Analysis - Focused on Waste Elimination of Re-bar Works (가치흐름 분석을 통한 건설프로세스의 낭비제거 방안)

  • Mun Jeong-Mun;Kim Chang-Duk;Park Dong-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.416-421
    • /
    • 2001
  • The domestic reinforcement concrete works have mainly worked the process of re-bar fabrication/assembly on site and re-bar works affected by structural safety, durability, and schedule with form work. Accordingly, This study analyzes the process of re-bar fabrication/assembly on site to apply lean production principles to construction Value Stream Analysis(VSA) is analyzed into value-adding activity and non-value-adding activity on construction process through value analysis and Value Stream Mapping(VSM). In the results, non-value-adding activity generates waste such as the activity steps, labors, equipments, materials, time, and so on. Additionally, push-driven production is investigated making low productivity from the overproduction and so on. To resolve the problems in the process, The purpose of this paper eliminates waste factor through maximizing the value-adding activity generating value added and minimizing non-value adding activity. Particularly, it makes flow production and pull-driven production through minimizing work-in-process(WIP ).

  • PDF

An Experimental Study on Mechanic properties of Hardened Fly-ash (플라이애쉬 경화체의 역학적 특성에 관한 실험적 연구)

  • Jo, Byung-Wan;Kim, Yeung-Jin;Park, Jong-Bin
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.134-138
    • /
    • 2003
  • The purpose of this paper is to recycle the fly ash to the valuable resources and settle environment problems which was caused by the fly ash produced from the thermal power plant. Making the fly ash-cement matrix reused fly ash in large quantities, we looked into minutely the physical properties - the elastic modulus, the compressive strength - to increase the usefulness as the building materials for the structure widely. In this paper, the variables are the water-binder(39, 42, 45%), the fine aggregate ratio(37, 41, 45%). Because the fracture energy is influenced by the strength, it is showed to decrease with the increase of W/B and S/a. Besides, we will be able to know that basic properties of the fly ash-cement matrix are similar to that of concrete. But, it is needed to carry out durability experiment on the drying shrinkage, creep, freezing and thawing test to use structural materials.

  • PDF

Creation of the naturally favorable waterside space in the arrangement of an arable land by the residents participation (주민참여에 의한 경지정리지구내의 자연친화적 수변공간조성)

  • 김선주;양용석
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.185-191
    • /
    • 1999
  • In a mean time, arrangement of a arable land is lead by government with same way, same type. It means that there are no considering on characteristic features of region and aspect of ecological environment that can experess its natural charactersistics. Because whenever there is needed to be arranging , most of structure are made by a ward office from a desgin to a execution so that cause many public resentment and durability is very short by a inappropriateness its maintenance. The purpose of this study is divided into four parts ; First, to form the naturally favorable waterside spaces by performing the basic water controlling funtions of the irrigation channel and the drainage channel. Second, to provide the meeting place of the residents and to restrore the ecological system by means of the formation of the naturally favorable waterside spaces. Third, to lead to the optimal design and maintenance that residents want by inviting the residents to participate at the begining stage of planning. A district of this study is located on Songsam(13-14 zone), Samseung-Lee Ganam-Meon Yeoujoo-Gun Jyonggi Province and a length of section is 420m. This study came up with the following results. First, estabished the type of design and area of the area by means of the collected residents' opinions. Seconds, changed the straight line water channel already designed to the curve water channel . Third changed the structure materials of the steel concrete structure to the natural materials . Fourth, change dthe design by area for the ecological system and the meeting place of the residents. Fifth, divided the whole area into fourth area in order to satisfy the residents' requests.

  • PDF

Service Life Evaluation Considering Height of RC Structures and Distance from Sea Shore (RC 구조물 높이와 해안가 거리를 고려한 염해에 대한 내구수명 평가)

  • Oh, Kyeong-Seok;Kim, Young-Joon;Lee, Seong-Hee;Kwon, Sung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.172-179
    • /
    • 2016
  • For an evaluation of service life in RC(Reinforced Concrete) structures, deterministic method and probabilistic method considering random variables of design parameters are usually adopted. In the work, surface chloride contents which vary with distance from sea shore and height are investigated from the previous research literature surveys, and they are considered for service life estimation. Through the analysis, the probabilistic method shows much lower results, which is due to variations of design parameters and very low intended durability failure. In the deterministic method, the structures within 250m and higher than 60m are evaluated to be free from chloride attack. In the probabilistic method, those higher than 60m in all the region and higher than 40m and 250m from sea shore are evaluated to satisfy the service life.

Quality of Recycled Fine Aggregate using Neutral Reaction with Sulfuric Acid and Low Speed Wet Abrader

  • Kim, Ha-Seog;Lee, Kyung-Hyun;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.490-502
    • /
    • 2012
  • The use of recycled aggregate, even for low-performance concrete, has been very limited because recycled aggregate, which contains a large amount of old mortar, is very low in quality. To produce a high-quality recycled aggregate, removing the paste that adheres to the recycled aggregate is very important. We have conducted research on a complex abrasion method, which removes the component of cement paste from recycled fine aggregate by using both a low-speed wet abrasion crusher as a mechanical process and neutralization as chemical processes, and well as research on the optimal manufacturing condition of recycled fine aggregates. Subsequently, we evaluated the quality of recycled fine aggregate manufactured using these methods, and tested the specimen made by this aggregate. As a result, it was found that recycled fine aggregates produced by considering the aforementioned optimal abrasion condition with the use of sulfuric acid as reactant showed excellent quality, recording a dry density of 2.4 and an absorption ratio of 2.94. Furthermore, it was discovered that gypsum, which is a reaction product occurring in the process, did not significantly affect the quality of aggregates. Furthermore, the test of mortar using this aggregate, when gypsum was included as a reaction product, showed no obvious retarding effect. However, the test sample containing gypsum recorded a long-term strength of 25.7MPa, whereas the test sample that did not contain gypsum posted a long-term strength of 29.4MPa. Thus, it is thought to be necessary to conduct additional research into the soundness and durability because it showed a clear reduction of strength.

Approaching Green Buildings Using Eco-Efficient Construction Materials: A Review of the state-of-the-art

  • Aghdam, Karim Aligholizadeh;Rad, Alireza Foroughi;Shakeri, Hamed;Sardroud, Javad Majrouhi
    • Journal of Construction Engineering and Project Management
    • /
    • v.8 no.3
    • /
    • pp.1-23
    • /
    • 2018
  • Since the protection the of human being from natural disaster and atmospheric factors have become an essential requirement, some attempts have been taken place to provide shelter and create a safe environment to a more comfortable life with welfare. For this purpose, using existing resources in nature and exploiting them in a different manner have been taken into account. Initially, the performed exploitations for construction had the least damage to the environment, but over time and as a result of population growth, aggressive exploitation of nature has led to destroying effects on the environment and resulted in consequences such as pollution and environmental destruction. Thus, the construction industry has been identified as the top pollutant factors of the environment. Among various construction factors, the building materials used in this industry are considered as the most important effective factors on the environment, as they have direct influences on the environment from the beginning of construction of the final steps. This research focuses on the review of the most of the existing green materials definitions and various approaches towards using eco-efficient construction materials. It presents and discusses possible ways of reducing the destructive effects on the environment by selecting and using green materials, review current literature and highlight the necessity of applying such materials in future constructions in all communities. This paper provides a base for this purpose that sustainable development communities and environment is realized by elimination of environmental pollution and approaching the criteria of green building by using sustainable materials.