• Title/Summary/Keyword: concrete durability.

Search Result 2,150, Processing Time 0.026 seconds

Bacteria's Survival Curve on the Surface of Cement Composite (시멘트 복합체 표면의 자기치유 박테리아 생장 곡선)

  • Park, Ji Yoon;Jang, In Dong;Son, Da Som;Yi, Chong Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.203-204
    • /
    • 2021
  • Bacteria used in self-healing concrete, which arrest the crack, helps increasing the durability is well known. However, the survival and activity of the bacteria are precisely unknown. In this research, to know the bacteria's survival curve on the surface of the cement composite, bacteria's survival curve has been measured by CFU at different curing days. The survival curve of 3 days and 7 days curing does not show the significant differences in their survival tendency. However, the slope of death phase of 7 days curing was steeper than the 3 days of curing. This research was focused on the death phase but for further research, set of interval time will be reduced and observe the lag phase and exponential phase.

  • PDF

A Study on the 3D Imaging of High Temperature Heating Cement Paste and the Analysis of Variation of the Pore Structure (고온 가열 시멘트 페이스트의 3D 영상화 및 세공구조 변화 분석에 관한 연구)

  • Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.147-148
    • /
    • 2020
  • In case of high temperature damage such as fire, the durability of concrete is reduced due to the collapse of internal pore tissue. Therefore, in this paper, we are going to analyze the pore structure of cement paste hardening agent using MIP analysis and build up 3D data produced using X-ray CT tomography. The test specimen is made of cement paste from W/C 0.4. As the temperature of heating increased, the amount of air gap and the diameter of air gap in cement paste increased. It is judged that the air gap structure inside cement collapsed due to the evaporation of the hydrate, gel count, capillary water, etc. inside the cement due to the high temperature.

  • PDF

Mechanical Properties and Absorption of Mortars Containing Hybrid Water-Repellent (하이브리드 발수제를 혼입한 모르타르의 역학적 특성 및 흡수량)

  • Kim, Wan-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.88-89
    • /
    • 2020
  • Research is underway to incorporate water-repellent agents inside mortars to improve the durability of concrete. Therefore, in this study, the mechanical properties and absorption rate were evaluated by adding a hybrid water repellent in which a liquid and a solid were mixed at a constant ratio.As a result of the experiment, the compressive strength of the mortar added with the hybrid water repellent showed a strength reduction of about 5% than the compressive strength of the OPC, and the overall water absorption was lower than that of the water repellent used alone.

  • PDF

A Study on the Comparison of Physical Properties of OPC and Low-Heat Cement for the Evaluation of Concrete Properties of Low-Heat Cement Using Non-Carbonate Raw Materials (비탄산염 원료 활용 저열시멘트 콘크리트 물성 평가를 위한 OPC와 저열시멘트의 물성 비교에 관한 연구)

  • Kwon, Min Su;Heo, Jong-Wan
    • Cement Symposium
    • /
    • s.49
    • /
    • pp.31-32
    • /
    • 2022
  • This study is to analyze the difference by comparing the physical properties of general Portland cement (OPC) and low-heat Portland cement (LHC) in the market to develop low-heat cement manufacturing technology that can minimize the amount of limestone by using non-carbonate circulating resources as raw materials. To this end, the mortar is being reviewed by evaluating the properties of the mortar, such as slump, strength, durability, and thermal insulation properties, with a difference in the mixing ratio.

  • PDF

Self-Healing Characteristics of Mortar Blocks according to the Mixing Ratio of Self-Healing Capsules (자기치유용 캡슐 혼입율에 따른 모르타르 블록의 자기치유 특성)

  • Yoon, Joo-Ho;Kim, Chae-Young;Na, Bum-Su;Lee, Jae-In;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.321-322
    • /
    • 2023
  • This study compared the compressive strength and healing strength to confirm the self-healing performance of mortar incorporating Bioinspired Self-healing Capsule (BSC) into cement composites as part of a study to mitigate the problem of durability deterioration due to cracks in concrete structures. As a result of the evaluation, it was found that the healing performance decreased as the mixing ratio of the BSC capsule increased.

  • PDF

A Study on the Physical Properties of Recycled Aggregates Using Concrete of Changing Waste Pottery Blain Fineness (폐도자기 분말도 변화에 따른 순환골재 사용 콘크리트의 물리적 특성에 관한 연구)

  • Ryu, Hyun-Gi;Park, Jeong-Min;Joung, Jae-Ho;Kim, Eui-Chang;Yoon, Seung-Joe
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.119-127
    • /
    • 2011
  • Objective of this study is to identify properties on strength increase of hardened concrete and fluidization of non-hardened concrete using waste ceramics generated by construction waste, which is a type of industrial waste, and by ceramics, which is a clay plastic, during its production process, and determine length change ratio caused by drying shrinkage during substitution of recycle aggregate and waste ceramics, and whether they can be used as concrete compounds. Slump of non-hardened concrete exhibited the best fluidization and formability at recycled aggregate's replacement ratio of 60% driven by higher substitution ratio of recycled aggregate and waste ceramics while air content met the KS requirement when substitution ratio of waste ceramics was $4,000cm^2/g$. Compressive strength of hardened concrete exceeded the requirements at early age and standard age and temperature dropped by roughly $6{\sim}10^{\circ}C$ less than the standard at maximum temperature in adiabatic temperature increase, which will hopefully result in stronger durability.

  • PDF

A Study on the Resistance Against Environmental Loading of the Fine-Size Exposed Aggregate Portland Cement Concrete Pavements (소입경 골재노출콘크리트포장의 환경하중 저항성에 대한 연구)

  • Chon, Beom-Jun;Lee, Seung-Woo;Chae, Sung-Wook;Bae, Jae-Min
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2009
  • Fine-size exposed aggregate portland cement concrete pavements (FEACP) have surface texture of exposed aggregate by removing upper 2$\sim$3mm mortar of surface of which curing is delayed by using delay-setting agent. FEACPs have advantages of maintaining low-noise and adequate skid-resistance level during the performance period than general portland cement concrete pavements. It is necessary to ensure the durability environmental loading to prevent unexpected distress during the service life of FEACP. In the process of curing, volume change accompanied change in by moisture and temperature could be an important cause of crack in concrete to construct for successful FEACP, The use of chloride containing deicer may accelerate defects of concrete pavement, such as crack and scaling. This study aim to evaluate environmental loading resistance of FEACP, based on the estimation of shrinkage-crack-control-capability by moisture evaporation and scaling by deicer in freeze-thaw reaction.

  • PDF

Properties of Non-Sintered Hwangtoh Mortar Using Eco-Friendly Inorganic Binding Material (친환경 무기결합재를 이용한 비소성 황토모르타르의 특성)

  • Heo, Jun-Oh;Lee, Jae-Kyu;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.499-506
    • /
    • 2014
  • A number of studies on eco-friendly and healthy building materials are being conducted as modern people are becoming more conscious about health and the environment they live in. Among those materials, studies on Hwangtoh are the most prevalent but due to its strength, crack coming from drying shrinkage, and susceptibility to water, the usage of Hwangtoh is incomplete and limited to be used as a common building material. Cement concrete, considered as one of the most widely used building materials, is extensively used in construction because it is economical, easily accessible and moldable and has proper compressive strength. Due to carbon dioxide created in the process of making cement concrete, it is recognized as pollution. Accordingly, there are a lot of studies on reduction of carbon dioxide in cement concrete industry. There are increasing numbers of researches as well as developments on Hwangtoh or traditional construction materials used in South Korea to reduce the environmental problems. Therefore, this study suggests the basic features of the construction material that can replace cement concrete in the future with the non-sindtered cement mixed with non-sintering hwangtoh which is made with the furnace slag and multiple stimulants.

Structural performance evaluation of precast concrete segment using synthetic fibres (프리캐스트 콘크리트 세그먼트의 합성섬유 보강재 적용에 따른 구조적 성능 평가)

  • Lee, Hoseong;Kim, Changyong;Lee, Sean S.;Kim, Seungjun;Lee, Kyeongjin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.469-483
    • /
    • 2018
  • Steel bars have been widely used as the primary reinforcement for Precast Segmental Concrete Lining for TBM Tunnels. Previously, studies have been carried out to gauge the potential for steel fiber reinforcement to replace the use of steel bar reinforcements in the segmental lining to reduce the amount of the steel bar reinforcement. Steel fiber reinforcements have been investigated and widely applied to SFRC TBM linings to improve the constructability of SFRC TBM linings worldwide. However, the steel fiber reinforcement often caused punctures to the water membranes inside tunnel lining and had long-term durability deterioration issues caused by steel corrosion, as well as cosmetic problems. Therefore, this paper sought to gauge the potential of synthetic fiber reinforcements, which have proven to be very attractive substitutes for steel fiber reinforcements. This study analyzed the performance of both steel and synthetic fiber reinforcements in segmental linings and evaluated the applicability of the fiber reinforcements to the TBM Precast Concrete Segmental Linings of TBM tunnels. As a conclusion, this study demonstrates that the potential use of steel and synthetic fibers in various combination, can substitute the rebar reinforcement in the concrete mix for segmental concrete linings.

Durability and Strength of Ternary Blended Concrete Using High Early Strength Cement (조강(早彈)시멘트를 사용(使用)한 3성분계(性分系) 콘크리트의 강도(彈度) 및 내구특성(耐久特性))

  • Hong, Chang-Woo;Jeong, Won-Kyong
    • Resources Recycling
    • /
    • v.19 no.5
    • /
    • pp.50-57
    • /
    • 2010
  • Ternary blended concrete(TBC), which contains both fly ash and granulated blast furnace slag, has an initial cost effective and is environment friendly. Furthermore, it has a lot of technical advantages such as the improvement of long term compressive strength, high workability, and the reduction of hydration heat. However, as the use and study on the performance of ternary blended concrete is limited, it is low short term compressive strength. This study was performed to evaluate the characteristics which are a long and short term compressive strengths, permeability and chemical attacks resistance of hardened high early concrete containing slag powder and fly-ash using high early strength cement(HE-TBC). Replacement rate of FA is fixed on 10% and replacement rate of slag powder are 0%, 10%, 20% and 30%. The test results showed that compressive and flexural strength of HE-TBC increased as the slag contents increased from 0% to 30% at the short term of curing. The permeability resistance of HE-TBC(fly ash 10%, blast 30%) was extremely good at the short and long terms. However, high early strength ternary blended concrete had weak on carbonation of chemical attack.