• 제목/요약/키워드: concrete contribution

검색결과 393건 처리시간 0.02초

유공 합성보의 극한강도식의 제안 (Ultimate Strength of Composite Beams with Unreinforced Web Opening)

  • 김창호;박종원;김희구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.369-374
    • /
    • 1999
  • A practical approach of calculating the ultimate strength of composite beams with unreinforced web opening is proposed. In this method, the slab shear contribution at the opening is calculated as the smaller of the shear strength of the slab and the pullout capacity of the shear connectors at the high moment end. A simple interaction equation is used to predict the ultimate strength under simultaneous bending moment and shear force. Strength prediction by the proposed method is compared with previous test results and the predictions by other analytical method. The comparison shows that the proposed method predicts the ultimate capacity with resonable accuracy.

  • PDF

아취작용에 의한 콘크리트 원형기둥의 전단저항;실험적 고찰 (Shear Resistance of Concrete Circular columns Due to Arch action : Experimental Study)

  • 김장훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.178-185
    • /
    • 1999
  • Six of scaled concrete circular columns were experimentally investigated for the contribution of arch action to the column lateral resistance. For this the specimens with the variation of tranverse hoop steel spacing were tested in absence of axial loading All specimens showed the flexure governing behavior pattern irrelevant to transverse hoop spacing. This indicates that the role of arch action should be understood as the intermediate mechanism causing the interaction between shear and flexural mechanisms A simple truss model was proposed to qualitatively explain this notation but further study is needed to advance its application to general columns.

  • PDF

The Verandah: Hong Kong's Contribution to a Southeast Asian and China-coast Urban Design

  • Faure, David
    • Journal of East-Asian Urban History
    • /
    • 제3권1호
    • /
    • pp.139-160
    • /
    • 2021
  • The verandah was a common feature of Chinese multi-storeyed houses in Southeast Asia and China. This paper argues that while an earlier version of a narrow walkway might have had its origin in Singapore, the building of an extension on the upper floors encroaching the airspace over the road skirting the building was an arrangement allowed by the colonial Hong Kong government in compensation to landlords for space devoted to ventilation. As the introduction of reinforced concrete allowed buildings to become taller, the more attractive it was to developers to incorporate the verandah design.

Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results

  • Shuraim, Ahmed B.;Aslam, Fahid;Hussain, Raja R.;Alhozaimy, Abdulrahman M.
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.739-760
    • /
    • 2016
  • This paper reports on punching shear behavior of reinforced concrete panels, investigated experimentally and through finite element simulation. The aim of the study was to examine the punching shear of high strength concrete panels incorporating different types of aggregate and silica fume, in order to assess the validity of the existing code models with respect to the role of compressive and tensile strength of high strength concrete. The variables in concrete mix design include three types of coarse aggregates and three water-cementitious ratios, and ten-percent replacement of silica fume. The experimental results were compared with the results produced by empirical prediction equations of a number of widely used codes of practice. The prediction of the punching shear capacity of high strength concrete using the equations listed in this study, pointed to a potential unsafe design in some of them. This may be a reflection of the overestimation of the contribution of compressive strength and the negligence of the role of flexural reinforcement. The overall findings clearly indicated that the extrapolation of the relationships that were developed for normal strength concrete are not valid for high strength concrete within the scope of this study and that finite element simulation can provide a better alternative to empirical code Equations.

Uni-axial behaviour of normal-strength CFDST columns with external steel rings

  • Dong, C.X.;Ho, J.C.M.
    • Steel and Composite Structures
    • /
    • 제13권6호
    • /
    • pp.587-606
    • /
    • 2012
  • Concrete-filled-steel-tubular (CFST) columns have been well proven to improve effectively the strength, stiffness and ductility of concrete members. However, the central part of concrete in CFST columns is not fully utilised under uni-axial compression, bending and torsion. It has small contribution to both flexural and torsion strength, while it can be replaced effectively by steel with smaller area to give similar load-carrying capacity. Also, the confining pressure in CFST columns builds up slowly because the initial elastic dilation of concrete is small before micro-crackings of concrete are developed. From these observations, it is convinced that the central concrete can be effectively replaced by another hollow steel tube with smaller area to form double-skinned concrete-filled-steel-tubular (CFDST) columns. In this study, a series of uni-axial compression tests were carried out on CFDST and CFST columns with and without external steel rings. From the test results, it was observed that on average that the stiffness and elastic strength of CFDST columns are about 25.8% and 33.4% respectively larger than CFST columns with similar equivalent area. The averaged axial load-carrying capacity of CFDST columns is 7.8% higher than CFST columns. Lastly, a theoretical model that takes into account the confining effects of steel tube and external rings for predicting the uni-axial load-carrying capacity of CFDST columns is developed.

Effect of curing condition on strength of geopolymer concrete

  • Patil, Amol A.;Chore, H.S.;Dodeb, P.A.
    • Advances in concrete construction
    • /
    • 제2권1호
    • /
    • pp.29-37
    • /
    • 2014
  • Increasing emphasis on energy conservation and environmental protection has led to the investigation of the alternatives to customary building materials. Some of the significant goals behind understaking such investigations are to reduce the greenhouse gasemissions and minimize the energy required formaterial production.The usage of concrete around the world is second only to water. Ordinary Portland Cement (OPC) is conventionally used as the primary binder to produce concrete. The cement production is a significant industrial activity in terms of its volume and contribution to greenhouse gas emission. Globally, the production of cement contributes at least 5 to 7 % of $CO_2$. Another major problem of the environment is to dispose off the fly ash, a hazardous waste material, which is produced by thermal power plant by combustion of coal in power generation processes. The geopolymer concrete aims at utilizing the maximum amount of fly ash and reduce $CO_2$ emission in atmosphere by avoiding use of cement to making concrete. This paper reports an experimental work conducted to investigate the effect of curing conditions on the compressive strength of geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator.

Sustainable concrete mix design for a target strength and service life

  • Tapali, Julia G.;Demis, Sotiris;Papadakis, Vagelis G.
    • Computers and Concrete
    • /
    • 제12권6호
    • /
    • pp.755-774
    • /
    • 2013
  • Considering the well known environmental issues of cement manufacturing (direct and indirect levels of $CO_2$ emissions), clinker replacement by supplementary cementing materials (SCM) can be a very promising first step in reducing considerably the associated emissions. However, such a reduction is possible up to a particular level of SCM utilization, influenced by the rate of its pozzolanic reaction. In this study a (4-step) structured methodology is proposed in order to be able to further adjust the concrete mix design of a particular SCM, in achieving additional reduction of the associated levels of $CO_2$ emissions and being at the same time accepted from a derived concrete strength and service life point of view. On this note, the aim of this study is twofold. To evaluate the environmental contribution of each concrete component and to provide the best possible mix design configuration, balanced between the principles of sustainability (low environmental cost) and durability (accepted concrete strength and service life ). It is shown that such a balance can be achieved, by utilising SCM by-products in the concrete mix, reducing in this way the fixed environmental emissions without compromising the long-term safety and durability of the structure.

Corrosion effects on tension stiffening behavior of reinforced concrete

  • Shayanfar, M.A.;Ghalehnovi, M.;Safiey, A.
    • Computers and Concrete
    • /
    • 제4권5호
    • /
    • pp.403-424
    • /
    • 2007
  • The investigation of corrosion effects on the tensile behavior of reinforced concrete (RC) members is very important in region prone to high corrosion conditions. In this article, an experimental study concerning corrosion effects on tensile behavior of RC members is presented. For this purpose, a comprehensive experimental program including 58 cylindrical reinforced concrete specimens under various levels of corrosion is conducted. Some of the specimens (44) are located in large tub containing water and salt (5% salt solution); an electrical supplier has been utilized for the accelerated corrosion program. Afterwards, the tensile behavior of the specimens was studied by means of the direct tension tests. For each specimen, the tension stiffening curve is plotted, and their behavior at various load levels is investigated. Average crack spacing, loss of cross-section area due to corrosion, the concrete contribution to the tensile response for different strain levels, and maximum bond stress developed at each corrosion level are studied, and their appropriate relationships are proposed. The main parameters considered in this investigation are: degree of corrosion ($C_w$), reinforcement diameter (d), reinforcement ratio (${\rho}$), clear concrete cover (c), ratio of clear concrete cover to rebar diameter (c/d), and ratio of rebar diameter to reinforcement percentage ($d/{\rho}$).

Experimental and numerical study of headed bars embedded in RC members under tension

  • Santana, Paulo F.M.;Silva, Patricia C.S.;Ferreira, Mauricio P.;Bezerra, Luciano M.;Oliveira, Marcos H.
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.531-546
    • /
    • 2022
  • Headed bars are often used when there is insufficient space for a straight or curved bar to be fully developed to ensure the transference of forces between steel and concrete in several types of connections between structural members. In such cases, the concrete breakout strength of the headed bars can be a critical point of the design and must be considered appropriately. This paper evaluates the tensile strength of headed bars embedded in reinforced concrete members, failing due to concrete breakout. Four experimental tests on headed bars embedded in slender concrete members are presented and discussed, showing that strength previsions from the design codes can be significantly conservative as they ignore the contribution from the flexural reinforcement. 3D finite element models were developed using Abaqus Unified FEA to simulate the tested specimens, and it was observed that they were able to reproduce the formation of the concrete cone accurately, besides the response and resistance observed in tests. Furthermore, the experimental, numerical, and design code resistances are compared and discussed. A new equation to evaluate the concrete cone strength of the tested headed bars is proposed, which takes into account parameters not explicitly considered in the current design equations.

고강도 철근 및 고강도 콘크리트를 사용한 보-기둥 접합부의 연성거동 (Ductile Behavior of High Strength Reinforced Concrete Beam-Column Joint)

  • 이정한;유영찬;이원호;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.537-540
    • /
    • 1999
  • The primary objective of this study is to make a contribution to the construction of 40~60 story R/C high rise building by developing the reinforcing details which can improve the seismic performance of high-strength (f'c=700kg/$\textrm{cm}^2$, fy=4000, 8000kg/$\textrm{cm}^2$) R/C beam-column joints. And the purpose of this study is to investigate experimentally the effect of load history on the total energy dissipation capacity of reinforced concrete flexural members. The reinforcing details which can make beam plastic hinging zones moved and spreaded from the column face is proposed to insure the ductile behavior of high-strength RC beam-column joints. The intermediate reinforcement which is horizontally anchored by interlinking each intermediate reinforcements is proposed and tested to examine the mechanical performance of proposed details. Main variables are the shape of the intermediate reinforcements and yield strength of rebars. From the test results, the newly proposed intermediate reinforcement details can move and spread the beam plastic hinging zone about 1.0d from the column face.

  • PDF