• 제목/요약/키워드: concrete compressive stress

검색결과 624건 처리시간 0.024초

Compressive behavior of rectangular sandwich composite wall with different truss spacings

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xing-Yu;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.783-794
    • /
    • 2020
  • Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.

콘크리트의 강도와 재령을 고려한 응력-변형률 관계식의 개발 (Development of Stress-Strain Relationship Considering Strength and Age of Concrete)

  • 오태근;이성태;김진근
    • 콘크리트학회논문집
    • /
    • 제13권5호
    • /
    • pp.447-456
    • /
    • 2001
  • 그 동안 많은 연구자들은 콘크리트의 응력-변형률 관계의 비선형 거동을 적절한 수식으로 나타내기 위해 많은 노력을 해 왔다. 그러나 이 응력-변형률 관계에 대한 대부분의 경험식은 경화된 콘크리트에 촛점을 맞추어 왔으며, 초기재령에서의 콘크리트의 거동을 잘 나타내지 못하였다. 여기서 초기재령에서 경화시까지 걸친 전 콘크리트의 재령에 대한 폭 넓은 이해는 콘크리트구조물의 내구성과 잔존수명을 평가하는데 있어서 매우 중요하다. 본 논문에서는 5가지의 강도수준과 12시간에서 28일까지의 재령에 대하여 응력-변형률 관계를 검토하였으며, 20$\pm$3$^{\circ}C$ 에서 수중양생된 ø100$\times$200mm의 원주공시체에 대하여 1축압축강도실험을 수행했다. 실험결과에 대한 회귀분석을 수행하여 강도와 재령에 따른 응력-변형률 관계의 모델식을 제시하였으며, 제시된 모델식의 검증을 위하여 실험결과와 기존의 실험결과와 모델식에 대한 해석적 검토도 수행하였다. 해석결과, 제시된 모델식이 실험결과와 잘 맞으며 응력-변형률 관계에 강도와 재령이 미치는 영향을 잘 나타내고 있음을 알 수 있었다.

Statistical evaluation of the monotonic models for FRP confined concrete prisms

  • Hosseinpour, Farid;Abdelnaby, Adel E.
    • Advances in concrete construction
    • /
    • 제3권3호
    • /
    • pp.161-185
    • /
    • 2015
  • FRP confining is a widely used method for seismic retrofitting of concrete columns. Several studies investigated the stress-strain behavior of FRP confined concrete prisms with square and rectangular sections both experimentally and analytically. In some studies, the monotonic stress-strain behavior of confined concrete was investigated and compressive strength models were developed. To study the reliability of these models, thorough statistical tests are required. This paper aims to investigate the reliability of the presented models using statistical tests including t-test, wilcoxon rank sum test, wilcoxon signed rank test and sign test with a level of significance of 5%. Wilk Shapiro test was also employed to evaluate the normality of the data distribution. The results were compared for different cross section and confinement types. To see the accuracy of the models when there were no significant differences between the results, the coefficient of confidence was used.

Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns

  • Le, An H.;Ekkehard, Fehling;Thai, Duc-Kien;Nguyen, Chau V.
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.125-138
    • /
    • 2018
  • The research on the confinement behavior of ultra high performance concrete without and with the use of steel fibers (UHPC and UHPFRC) has been extremely limited. In previous studies, authors experimentally investigated the axially compressive behavior of circular steel tube confined concrete (STCC) short and intermediate columns with the employment of UHPC and UHPFRC. Under loading on only the concrete core, the confinement effect induced by the steel tube was shown to significantly enhance the utimate stress and its corresponding strain of the concrete core. Therefore, this paper develops a simplified stress - strain model for circular STCC columns using UHPC and UHPFRC with compressive strength ranging between 150 MPa and 200 MPa. Based on the regression analysis of previous test results, formulae for predicting peak confined stress and its corresponding strain are proposed. These proposed formulae are subsequently compared against some previous empirical formulae available in the literature to assess their accuracy. Finally, the simplified stress - strain model is verified by comparison with the test results.

콘크리트 포장 피로실험 데이터의 쪼갬인장 피로특성 (Split Tension Fatigue Characteristics Analysis of Fatigue Tests Data for Concrete Pavements)

  • 김동호;김성환;윤병성;이봉학
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.139-147
    • /
    • 2003
  • The purpose of this study was to investigate and analyze the fatigue test data of pavement concrete. The static strength tests were carried out to check the compressive strength, flexural strength, and split tension strength at 56 days in order to minimize strength variation effect during test. The specimens were fabricated at twelves sections at a construction site of highway. The stress level and stress ratio of fatigue test were determined from static test results. The results are as follow: The flexural strength at 28 days mostly satisfied the criterion for design, but the compressive strength at 28 days were slightly below the criterion even though it satisfied at 56 days. The fatigue limit was 2 million cycles if the specimen was not failed to that cycles. The S-N curves were developed from the fatigue test results at each stress levels and each stress ratio. Then, the fatigue life of pavement concrete at a given stress level and fatigue strength of pavement concrete could be derived from these curves. Analysis using method No.2 was more acceptable because resulting of comparison and analysis using method No.2 was presented 2 sections were presented $R^2$ < 0.7, and other 2 sections were presented 0.7 < $R^2$ < 0.8, and the others 8 sections were $R^2{\geq}0.8$.

  • PDF

Compressive Properties of Amorphous Metal Fiber Reinforced Concrete Exposed to high Temperature

  • Lee, Jun-Cheol;Kim, Wha-Jung;Lee, Chang-Joon
    • 한국건축시공학회지
    • /
    • 제12권2호
    • /
    • pp.183-193
    • /
    • 2012
  • Compressive property of high strength concrete with amorphous metal fibers subject to high temperature has been investigated. The measure of this investigation includes explosive spalling, weight loss, residual compressive strength, strain at peak stress, elastic modulus, and residual energy absorption capacity after exposure to $400^{\circ}C$, $600^{\circ}C$and $800^{\circ}C$. In addition to the amorphous metal fiber, two other types of fibers (polypropylene fiber and hooked-end steel fiber) were also included in this investigation for comparison. The experimental program was conducted with high strength concrete using several combinations of the fiber types. The testing result shows that the concrete with amorphous metal fibers plus polypropylene fibers shows a superior behavior than those using other combination or single fiber type ingredient.

A probabilistic fatigue failure analysis for FRSCC with Granite sawing waste

  • K, Aarthi.;K, Arunachalam.;S, Thivakar.
    • Computers and Concrete
    • /
    • 제18권5호
    • /
    • pp.969-982
    • /
    • 2016
  • This paper investigates the compressive fatigue behaviour of polypropylene fibre reinforced self compacting concrete with Granite Sawing Waste (GSW). An experimental programme was conducted to obtain the fatigue lives of fibre reinforced self compacting concrete (FRSCC) at various stress levels. The stress ratio was kept constant as 0.3. Compressive fatigue test was conducted on 60 cubic specimens with 100mm edge length and 0.1% of polypropylene fibres at a frequency of 0.05Hz. The test results indicate that the fatigue lives of concretes containing granite sawing waste follow the double-parameter Weibull distribution. The fatigue strength equations have been developed based on different probabilities of failure.

선박충돌에 따른 콘크리트 배수갑문 교각 구조해석 (Gate Pier damage assessment by vessel collision)

  • 김관호;조재용;조영권
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.165-166
    • /
    • 2010
  • 내부공사 및 유지관리 기간 중 발생 가능한 충돌시나리오를 설정하여 갑문 및 교각의 충돌해석 및 손상도를 구조해석 하였다. 또한, 충돌해석은 재료비선형을 고려하여 시간이력해석을 수행하였으며 충돌해석에서 교각에 전달되는 충돌하중을 산정하여 구조해석한 후 손상도를 평가하였다.

  • PDF

염해를 받은 콘크리트의 역학적 거동 및 수화 생성물 조사 (Investigation of Mechanical Behavior and Hydrates of Concrete Exposed to Chloride Ion Penetration)

  • 강윤석;임귀환;박병선
    • 한국건설순환자원학회논문집
    • /
    • 제11권4호
    • /
    • pp.381-390
    • /
    • 2023
  • 본 연구에서는 염해를 받은 콘크리트의 역학적 성능 평가를 수행하고, 실험 결과를 바탕으로 염소이온 농도에 따른 압축응력변형률 모델을 제시하였다. 염해를 모사하기 위해 콘크리트 배합 시 CaCl2 용액을 첨가하였으며, 염소이온의 농도는 결합재의 중량 대비 0, 1, 2, 4 %가 되도록 하였다. 콘크리트의 최대 압축응력 이후의 응력-변형률 곡선을 조사하기 위해 변위 제어를 통해 압축강도를 측정하였다. 염소이온 농도가 1 %인 경우에는 최대 압축응력이 증가하였으나, 염소이온 농도가 2 % 이상인 경우에는 최대 압축응력이 감소하였다. 최대 압축응력에서의 변형률의 경우 재령 7일의 시편에서는 염소이온 농도에 따른 경향이 나타나지 않았다. 재령 28일의 시편에서는 염소이온 농도가 증가함에 따라 감소하였다. 재령 28일의 최대 압축응력와 변형률의 변화를 이용하여 Popovics model에 기반한 응력-변형률 곡선 모델을 제시하였다. 염소이온의 농도 증가에 따른 역학적 성능 저하의 원인을 조사하기 위해 수화생성물 분석을 수행하였다. 염소이온의 농도가 증가함에 따라 Friedel's salt가 증가하고, portlandite가 감소하는 것을 확인하였다.

Mix Design and Properties of Recycled Aggregate Concretes: Applicability of Eurocode 2

  • Wardeh, George;Ghorbel, Elhem;Gomart, Hector
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.1-20
    • /
    • 2015
  • This work is devoted to the study of fresh and hardened properties of concrete containing recycled gravel. Four formulations were studied, the concrete of reference and three concretes containing recycled gravel with 30, 65 and 100 % replacement ratios. All materials were formulated on the basis of S4 class of flowability and a target C35 class of compressive strength according to the standard EN 206-1. The paper first presents the mix design method which was based on the optimization of cementitious paste and granular skeleton, then discusses experimental results. The results show that the elastic modulus and the tensile strength decrease while the peak strain in compression increases. Correlation with the water porosity is also established. The validity of analytical expressions proposed by Eurocode 2 is also discussed. The obtained results, together with results from the literature, show that these relationships do not predict adequately the mechanical properties as well as the stress-strain curve of tested materials. New expressions were established to predict the elastic modulus and the peak strain from the compressive strength of natural concrete. It was found that the proposed relationship E-$f_c$ is applicable for any type of concrete while the effect of substitution has to be introduced into the stress-strain (${\varepsilon}_{c1}-f_c$) relationship for recycled aggregate concrete. For the full stress-strain curve, the model of Carreira and Chu seems more adequate.