• Title/Summary/Keyword: concrete compressive stress

Search Result 621, Processing Time 0.021 seconds

A Proposal of the Compressive Stress Distribution Model of Ultra High-Strength Concrete (초고강도 콘크리트에 적합한 응력분포 모델의 제안)

  • 박훈규;윤영수;한상묵;장일영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.436-441
    • /
    • 1997
  • This paper presents the compressive stress distribution model appropriate to predict the ultimate strength of structural elements using ultra high-strength concrete. From the results of this investigation, the following conclusions are drawn: 1. The constant value of strain at extreme concrete compression fiber of 0.0027 is seen to represent satisfactorily the experimental result for ultra high-strength concrete. 2. The current ACI-318 rectangular stress block parameters were found to overestimate the moment capacity of ultra high-strength concrete columns with eccentrically loaded. 3. The equivalent trapezoidal stress distribution model with new parameter $\lambda_1$ and $\lambda_2$ was developed.

  • PDF

An experimental Study on the Confinement Effect of Concrete specimens confined by Single Spirals (단나선근으로 횡보강된 콘크리트의 횡보강효과)

  • 김진근;박찬규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.301-305
    • /
    • 1994
  • Experimental research was carried out to investigate the confinement effect of concrete specimens confined by single spirals subjected to the concentric axial compressive load. Main variables are the compressive strength of concrete, the spacing of the spiral reinforcement and the yield strength of the spiral reinforcement. Axial stress-strain curves are reported.

  • PDF

Analysis and Design Programming of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발)

  • 김성도;김성수
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • In this study, analysis and design programs of bending of RC beams strengthened with fiber sheets are developed by using Visual Basic Language. The program consists two groups, ultimate strength method and nonlinear flexural analysis method. Ultimate strength method regards concrete compressive stress as a rectangular stress block and do not consider tensile stress of concrete and load-deflection curves. On the other hand, nonlinear flexural analysis considers tensile stress of concrete, load-deflection curves, state of stress distribution and failure strain of strengthening material. Also, the analysis method used in this study regards nonlinear flexural stress as compressive stress of concrete. This program can be a good tool for determining the bending strength of strengthened RC beams and estimating the amount of fiber sheets for practical use.

The Stress-Strain Relationship and Compressive Strength of Concrete Containing Hwangtoh and Slag (황토와 슬래그를 첨가한 콘크리트의 강도 및 응력-변형률 관계)

  • Kang, Hong-Ki;Yang, Keun-Hyeok;Lee, Young-Ho;Hwang, Hey-Zoo;Chung, Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.672-675
    • /
    • 2004
  • The objective of this study was to understand the effect of hwangtoh and slag on various properties of concrete. Main variables were replacement level of admixtures, hwangtoh and slag, and curing temperature. Test results indicated that the compressive strength of concrete replaced by either hwangtoh and slag was significantly influenced by curing temperature. The elasticity modulus and compressive peak strain of concrete showed a small increase with increasing hwangtoh replacement.

  • PDF

Effects of Specimen Length on Flexural Compressive Strength of Polymer Concrete (부재의 길이가 폴리머 콘크리트의 휨압축 강도에 미치는 영향)

  • 연규석;김남길;주명기;유근우;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper the influence or specimen length on flexural compressive strength and parameter or equivalent rectangular stress block of polymer concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to eccentric compression were tested using four different length-to-depth ratios(from 1.0, 2.0, 3.0 and 4.0) of specimens with compressive strength of 1,020kgf/cm$^2$. Results indicate that for the region of h/c$\leq$3.0 the reduction in equivalent rectangular stress block depth and flexural compressive strength with increase of length-to-depth ratios was apparent but for the region of h/c$\geq$3.0 they were nearly constant. It means that for the region of h/c$\geq$3.0 effect of specimen length on equivalent rectangular stress block depth and flexural compressive strength was negligible. It was also founded that the effect of specimen length on v, a coefficient of strength, that was from 0.84 to 0.86 regardless of h/c was petty. Finally, predictive equation is, suggested by using modified law of effect of specimen length and results.

  • PDF

Unified prediction models for mechanical properties and stress-strain relationship of dune sand concrete

  • Said Ikram Sadat;Fa-xing Ding;Fei Lyu;Naqi Lessani;Xiaoyu Liu;Jian Yang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.595-606
    • /
    • 2023
  • Dune sand (DS) has been widely used as a partial replacement for regular sand in concrete construction. Therefore, investigating its mechanical properties is critical for the analysis and design of structural elements using DS as a construction material. This paper presents a comprehensive investigation of the mechanical properties of DS concrete, considering different replacement ratios and strength grades. Regression analysis is utilized to develop strength prediction models for different mechanical properties of DS concrete. The proposed models exhibit high calculation accuracy, with R2 values of 0.996, 0.991, 0.982, and 0.989 for cube compressive strength, axial compressive strength, splitting tensile strength, and elastic modulus, respectively, and an error within ±20%. Furthermore, a stress-strain relationship specific to DS concrete is established, showing good agreement with experimental results. Additionally, nonlinear finite element analysis is performed on concrete-filled steel tube columns incorporating DS concrete, utilizing the established stress-strain relationship. The analytical and experimental results exhibit good agreement, confirming the validity of the proposed stress-strain relationship for DS concrete. Therefore, the findings presented in this paper provide valuable references for the design and analysis of structures utilizing DS concrete as a construction material.

Evaluation on Residual Compressive Strength and Strain Properties of Ultra High Strength Concrete with Design Load and Elevated Temperature (설계하중 및 고온을 받은 초고강도 콘크리트의 잔존압축강도 및 변형 특성 평가)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Nam, Jeong-Soo;Yun, Jong-Il;Bae, Chang-O;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.263-264
    • /
    • 2012
  • In this study, the ultra high strength concrete which have 100, 150, 200MPa took the heat from 20℃ to 70 0℃ and the 0, 20% stress in normal condition's to evaluate stress-strain, residual compressive strength and thermal expansion deformation were evaluated. The heating speed of specimen was 0.77℃/min 20~50℃, 50℃ before the target temperature, and the other interval's heating speed was 1℃/min. As a result, the stress-strain curve of non-load specimen showed the liner behavior at high temperature when the specimen's strength increased more. If ultra high strength concrete got loads, its compressive strength tended to decrease different from the normal strength concrete. The thermal expansion deformation was expanded from a vitrification of quartz over 500℃. however, over the 600℃, it was shrinked because of the dehydration of the combined water.

  • PDF

Elimination of the effect of strain gradient from concrete compressive strength test results

  • Tabsh, Sami W.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.375-388
    • /
    • 2006
  • Poor strength test results are sometimes not an indication of low concrete quality, but rather inferior testing quality. In a compression test, the strain distribution over the ends of the specimen is a critical factor for the test results. Non-uniform straining of a concrete specimen leads to locally different compressive stresses on the cross-section, and eventual premature breaking of the specimen. Its effect on a specimen can be quantified by comparing the compressive strength results of two specimens, one subjected to uniform strain and another to a specified strain gradient. This can be done with the help of a function that relates two parameters, the strain ratio and the test efficiency. Such a function depends on the concrete strength and cross-sectional shape of the specimen. In this study, theoretical relationships between the strain ratio and test efficiency are developed using a concrete stress-strain model. The results show that for the same strain ratio, the test efficiency is larger for normal strength concrete than for high strength concrete. Further, the effect of the strain gradient on the test result depends on the cross-sectional shape of the specimen. Implementation of the results is demonstrated with the aid of two examples.

Tensile Creep Model of Concrete Incorporation the Effects of Humidity and Time at Loading (재하시 재령과 습도의 영향을 고려한 콘크리트의 합리적인 인장크리프 모델)

  • 이형준;오병환
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.3-11
    • /
    • 1999
  • The creep characteristics of concrete under tensile stress has been usually assumed to have the same characteristics as that under compressive stress in the time-dependent analysis of concrete structures. However, it appears from the recent experimental studies that tensile creep behavior is much different from compressive one. In particular, high sustaining tensile stress may cause time-dependent cracking and thus lead to tensile failure. It is, therefore, necessary to model the tensile creep behavior accurately for realistic time-dependent analysis of concrete structures. The present paper to have been focused to suggested more realistic model for the tensile creep behavior of concrete. The models are compared with tensile creep test data available in the literature. The proposed model may allow more refined analysis of concrete structures under time-dependent loading.

The Mechanical Properties of High-Strength Concrete-The Effect of Strain Rate and the Tensile Strength- (고강도콘크리트의 재료역학적 특성 연구-변형도율과 인장강도를 중심으로-)

  • 김진근;박찬규;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.111-118
    • /
    • 1992
  • The mechanical behaviors related to the strain rate effect and the tensile strength of high-strength concrete were investigated in this study. For this purpose, concrete cylinder specimens with 4 different compressive strengths from 232kg/$\textrm{cm}^2$ to 1113kgf/$\textrm{cm}^2$ were tested and analysed on the mechanical properties(stress-strain relationship, compressive, modulus of elasticity, strain at peak compressive stress). From this experimental and analytical study, it seems that the current prediction model(ACI) for modulus of rupture need to be refined. Therefore, more refined equations for evaluation tensile strength of concrete are proposed.

  • PDF