• Title/Summary/Keyword: concrete compressive strength

Search Result 4,854, Processing Time 0.026 seconds

Multi-axial strength criterion of lightweight aggregate (LWA) concrete under the Unified Twin-shear strength theory

  • Wang, Li-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.495-508
    • /
    • 2012
  • The strength theory of concrete is significant to structure design and nonlinear finite element analysis of concrete structures because concrete utilized in engineering is usually subject to the action of multi-axial stress. Experimental results have revealed that lightweight aggregate (LWA) concrete exhibits plastic flow plateau under high compressive stress and most of the lightweight aggregates are crushed at this stage. For the purpose of safety, therefore, in the practical application the strength of LWA concrete at the plastic flow plateau stage should be regarded as the ultimate strength under multi-axial compressive stress state. With consideration of the strength criterion, the ultimate strength surface of LWA concrete under multi-axial stress intersects with the hydrostatic stress axis at two different points, which is completely different from that of the normal weight concrete as that the ultimate strength surface is open-ended. As a result, the strength criteria aimed at normal weight concrete do not fit LWA concrete. In the present paper, a multi-axial strength criterion for LWA concrete is proposed based on the Unified Twin-Shear Strength (UTSS) theory developed by Prof Yu (Yu et al. 1992), which takes into account the above strength characteristics of LWA under high compressive stress level. In this strength criterion model, the tensile and compressive meridians as well as the ultimate strength envelopes in deviatoric plane under different hydrostatic stress are established just in terms of a few characteristic stress states, i.e., the uniaxial tensile strength $f_t$, the uniaxial compressive strength $f_c$, and the equibiaxial compressive $f_{bc}$. The developed model was confirmed to agree well with experimental data under different stress ratios of LWA concrete.

Characteristic of Cold-Weather Concrete by the Variation of Compressive Strength (강도 변화에 따른 한중콘크리트 특성연구)

  • 신성우;김인기;안종문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.154-159
    • /
    • 1995
  • Cold weather concrete presents the many characteristic variation of quality, according to the mixing and cooling point, the cooling time and the quantity of air besides the compressive strength of concrete. Thus, in this study to verify the character of cold-weather concrete we make the concrete specimens at laboratory and cool them at cooling-melting machine and then test the 7days compressive strength of them, with the variation of compressive strength of concrete, cooling point, cooling time, cooling weather and air quantity. At the results, the compressive strength of concrete decrease in the case of early cooling point, long cooling time, low cooling temperature and the low design compressive strength

  • PDF

Compressive Strength Control of High Strength Concrete Structure Using Samples with Isolated Junction Test (고강도콘크리트 벽체부재에 접합분리 시험체를 활용한 강도관리에 관한 연구)

  • Ki, Jun-Do;Kim, Hak-Young;Kim, Kwang-Ki;Paik, Min Su;Lim, Nam Gi;Jung, Sang Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.47-50
    • /
    • 2009
  • The existing techniques used to estimate and manage the compressive strength of concrete do not include the environmental factors that influence the development of compressive strength and the compressive strength itself. Thus, it is necessary to develop a reasonable yet simple way to measure the compressive strength of concrete structures at construction sites by considering concrete's mechanical properties and curing environment. This study was conducted to propose an acrylic form and a junction isolation mold with crack-inducing boards that uses non-destructive methods to create and collect concrete test samples that are cured in the same condition as the actual concrete structures. junction isolation molds were used in high-strength and super high-strength concrete to evaluate the reliability of compressive strength evaluation on the test sample. The following were the findings of this study:

  • PDF

Size Effect on Axial Compressive Strength of Notched Concrete Specimens (노치가 있는 콘크리트 실험체의 축압축 강도에 대한 크기효과)

  • 이성태;김봉준;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.99-108
    • /
    • 2000
  • The size effect on axial compressive strength in notched concrete specimens was experimentally investigated. Based on the concept of the fracture mechanics and size effect law, theoretical studies for axial compressive failure of concrete were reviewed, and two failure modes of concrete specimens under compression were discussed. In this study, experiments of axial compressive failure, which is one of the two failure modes, was carried out by using cylindrical specimens. Adequate notch length was taken from the experimental result of strength variation based on the notch length. And, by taking various sizes of specimens the size effect on axial compressive strength of concrete was investigated. Also, model equations were suggested by modified size effect law (MSEL). The test results show that size effect appears conspicuously for all series of specimens. Additionally, the effect of initial notch length on axial compressive strength was also apparent.

Failure characteristics of columns intersected by slabs with different compressive strengths

  • Choi, Seung-Ho;Hwang, Jin-Ha;Han, Sun-Jin;Kang, Hyun;Lee, Jae-Yeon;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.435-443
    • /
    • 2020
  • The objective of this study was to determine the effective compressive strength of a column-slab connection with different compressive strengths between the column and slab concrete. A total of eight column specimens were fabricated, among which four specimens were restrained by slabs while the others did not have any slab, and the test results were compared with current design codes. According to ACI 318, the compressive strength of a column can be used as the effective compressive strength of the column-slab connection in design when the strength ratio of column concrete to slab concrete is less than 1.4. Even in this case, however, this study showed that the effective compressive strength decreased. The specimen with its slab-column connection zone reinforced by steel fibers showed an increased effective compressive strength compared to that of the specimen without the reinforcement, and the interior column specimens restrained with slabs reached the compressive strength of the column.

An Experimental Study on the Compressive Strength of High Strength Concrete Heated High. (고온수열된 고강도콘크리트의 압축강도에 관한 실험적 연구)

  • 강병희;오창희
    • Fire Science and Engineering
    • /
    • v.3 no.2
    • /
    • pp.3-10
    • /
    • 1989
  • The results on high strength concrete by heating high are as follows: 1. High strength concrete appeared an estimated 5.5% higher than ordinary concrete in the central temperature of specimens by heating. 2. High strength concrete is higher than ordinary concrete in the decreased width of the ratio on the residual compressive strength by heating high. According to heating temperature and time, the inferred formula of compressive strength on high strength concrete showed: Fc=-0.53Te -2.4Ti +748.4

  • PDF

Strength Development of High-Strength Concrete in Structure

  • Msuda, Yochihiro
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.31-45
    • /
    • 2000
  • Because of the high unit cement content in the concrete mix, major concrete temperature rises are observed in the initial stages of hardening in structural members with large cross-sections made of high-strength concrete. While this temperature rise in the initial stages of hardening contributes to the initial development of the concrete strength, it also causes thermal cracking and obstructs medium to long-term increases of the concrete strength. In the study reports below, investigations were made on the effects of the concrete temperature rise in the initial stages of hardening on the medium to long-term development of the strength of structural concrete between the ages of 28 and 91 days. In the study, comparisons were made, for example, between the compressive strength of a control specimen subjected to standard curing at 28 days and the compressive strength of core specimens taken from structural members, and observations were made on the methods of evaluating the concrete strength in structure, defined here as the compressive strength of core specimens at 91 days. The results obtained indicate that, when the maximum temperature of the concrete is the structure does not exceed $60^{\circ}C$, the concrete strength in structure at the age of long-term will generally be greater than the compressive strength of the standard-curing specimens at 28 days, allowing one to evaluate the strength of the structural concrete in terms of the compressive strength of the 28-days standard-curing specimens. When, on the other hand, the maximum temperature of the concrete in the structure exceeds $60^{\circ}C$, the strength in concrete structure may be smaller than the compressive strength of the 28-days standard-curing specimens, creating risks in the evaluation of the concrete strength in structure by latter.

  • PDF

Development of A Strength Test Method for Irregular Shaped Concrete Block Paver (이형 콘크리트 블록의 강도 평가방법에 관한 연구)

  • Lin, Wuguang;Park, Dae-Geun;Ryu, SungWoo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • PURPOSES : This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.

Prediction of Compressive Strength of Concrete using Probabilistic Neural Networks (확률 신경망이론을 사용한 콘크리트 압축강도 추정)

  • 김두기;이종재;장성규;임병용
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.311-316
    • /
    • 2003
  • The compressive strength of concrete is a criterion to produce concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of Concrete at the Construction site. Therefore, strength prediction before the placement of concrete is highly desirable. This study presents the probabilistic technique for predicting the compressive strength of concrete on the basis of concrete mix proportions. The estimation of the strength is based on the probabilistic neural network, and show that the present methods are very efficient and reasonable in predicting the compressive strength of concrete probabilistically.

  • PDF

A Study on the Estimation of Compressive Strength of Ready-mixed Concrete On the basis of Mix-Design (콘크리트 배합표에 의한 현장 콘크리트의 압축강도 추정에 관한 연구)

  • 조홍범;윤상천;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.257-262
    • /
    • 2001
  • There are only a few tests to ensure concrete quality before placing in domestic situ; One is slump test for workability, the other is air content test for durability, the concrete compressive strength which is one of important factors to influence on concrete Quality has been tested after 28 days placing. Methods on early judgement of concrete strength have been introduced for concrete quality management, but such methods are time consuming, expensive, and required special expertise. Therefore, these have difficulty in situ application for concrete management. This study aimed at reviewing application of estimated equation of compressive strength as means for ready-mixed concrete, making an estimated equation which enables to estimate 28 days compressive strength by using regression formula analysis on basis of mixing designs of ready mixed concrete and results of compressive strength.

  • PDF