• Title/Summary/Keyword: concrete bridge girders

Search Result 228, Processing Time 0.027 seconds

An Experimental Study for Performance of PSC-I Girders with 60MPa High-Strength Concrete (설계강도 60MPa급 고강도 PSC의 내하성능 검토)

  • Lee, Jae-Yong;Min, Kyung-Hwan;Yang, Jun-Mo;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.9-12
    • /
    • 2008
  • PSC-I girder is widely used in designing bridge. Currently partial advanced country have constructed bridge with high strength concrete, while in-country rather less concrete strength(40MPa) has been used to build bridge girder. So, this paper presents characteristics and behavior of member casted by high strength concrete to apply practically. For this aim, 4 girders were fabricated to investigate performance and structural behavior. Prior to test, structural analysis was performed with common program. Steel gages and concrete gage were filled up to measure longitudinal and vertical strain of reinforcement and concrete. Linear Variable Differential Transducer and concrete surface gage were also set to measure deflection and strain of concrete. Load-deflection relation and crack mode were analyzed at transfer and test and compared with the structural analysis

  • PDF

Ultimate Flexural Strength Evaluation of Construction Joints in PSC Bridge Girders (PSC 교량 부재의 시공이음부의 극한 휨강도 평가)

  • 채성태;오병환;김병석;이상희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.279-284
    • /
    • 2002
  • Prestressed concrete(PSC) bridge structures with a number of continuous spans has been segmentally built in many countries. These methods include incremental launching method, movable scaffolding method, full staging method and balanced cantilever method. In these segmentally constructed prestressed concrete bridges, many construction joints exist and these construction joints are weak points in PSC bridges. The prestress force can be introduced prestress force continuously through the construction joints of PSC bridge superstructure using tendon couplers. The main objective of this study is to evaluate the structural behavior and ultimate flexural strength of construction joints in PSC girder bridge members. To this end, a comprehensive experimental program has been set up and a series of full-scale tests have been performed. Ultimate flexural strength of construction joint in PSC members with tendon couplers is decreased by approximately 10% for non-coupled members.

  • PDF

Basic study about Geometric feasibility Analysis of the System form for the Bridge Slab (교량 상판 콘크리트 타설용 거푸집 시스템의 기하학적 타당성 분석의 기초연구)

  • Sung, Soojin;Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.197-198
    • /
    • 2014
  • The concrete work of bridge decks is performed in a high place, which may reduce safety and productivity. In addition, the conventional method for deck forms require a great deal of manpower, and a form (sheathing) board is damaged when removed after curing. As a result, the concrete deck work of bridge construction becomes the cause of delayed construction and increased cost. To solve these problems, SMART form, a system form, is developed. SMART form is a temporary device for easier installation and removal, by mounting it to the lower flange of a bridge girder and using a mechanical behavior of the form system for deck concrete pouring. For stable installation and removal of the developed SMART form, geometric behaviors should be analyzed to prove its validity. Furthermore, the validity of geometric behaviors when the SMART form size is altered in response to the various arrangement of bridge girders should be proved. Thus, the study is intended to analyze the geometric validity of the form system for bridge deck concrete pouring. The structural stability of the form system for bridge deck concrete pouring can be secured, which will be applied in the field.

  • PDF

Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders

  • He, Jun;Lin, Zhaofei;Liu, Yuqing;Xu, Xiaoqing;Xin, Haohui;Wang, Sihao
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.553-568
    • /
    • 2020
  • Steel-concrete composite structures have been extensively used in building, bridges, and other civil engineering infrastructure. Shear stud connectors between steel and concrete are essential in composite members to guarantee the effectiveness of their behavior in terms of strength and deformability. This study focuses on investigating the shear stiffness of headed studs embedded in several types of concrete with wide range of compressive strength, and their effects on the elastic behavior of steel-concrete composite girders were evaluated. Firstly, totally 206 monotonic push-out tests from the literature were reviewed to investigate the shear stiffness of headed studs embedded in various types of concrete (NC, HPC, UHPC etc.). Shear stiffness of studs is defined as the secant stiffness of the load-slip curve at 0.5Vu, and a formulation for predicting defined shear stiffness in elastic state was proposed, indicating that the stud diameter and the elastic modulus of steel and concrete are the main factors. And the shear stiffness predicted by the new formula agree well with test results for studs with a diameter ranging from 10 to 30 mm in the concrete with compressive strength ranging from 22.0 to 200.0MPa. Then, the effects of shear stiffness on the elastic behaviors of composite girders with different sizes and under different loading conditions were analyzed, the equations for calculating the stress and deformation of simply supported composite girders considering the influence of connection's shear stiffness were derived under different loading conditions using classical linear partial-interaction theory. As the increasing of shear stiffness, the stress and deflection at the most unfavorable section under partial connected condition tend to be those under full connected condition, but the approaching speed decreases gradually. Finally, the connector's shear stiffness was recommended for fully connection in composite girders with different dimensions under different loading conditions. The findings from present study may provide a reference for the prediction of shear stiffness for headed studs and the elastic design of steel-concrete composite girder.

Estimation of Fatigue safety for PSC Bridge Decks (PSC 바닥판의 피로 안전성 평가)

  • 김영진;이정우;주봉철;김병석;박성용;이필구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.525-530
    • /
    • 2002
  • This study is peformed to propose the slab deck for the composite bridge with two girders. Considering the characteristics of the long span and the construction conditions in korea, a cast-in-place PSC deck was proposed for that bridge. To examine structural behaviors and safety of the proposed PSC deck, two real scale partitions of deck(12m$\times$3.2m) were tested under the fatigue loading. In the test, the failure mode and behaviors of each specimen, and the ultimate load carrying capacity of the two-girder-bridge deck were identified. Generally, the failure of concrete bridge deck is caused by the local punching shear stress resulting from the moving wheel load. Even though its ultimate flexural capacity is sufficiently larger than the demand, it could be failed by the punching shear fatigue. Therefore, the fatigue safety of the proposed PSC deck should be checked.

  • PDF

Construction of the longest open toped steel box girder composite bridge in the country (국내 최장 개구제형 합성형교 시공)

  • Oh, Hyun-Chul;Ma, Hyang-Wook;Kim, In-Gyu;Kim, Young-Jin;Jang, Seung-Kyoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.165-166
    • /
    • 2009
  • This paper is to research for construction of the longest open toped steel box girder composite bridge using precast concrete deck in the country. This type bridge can bring down the construction costs by reducing the steel's weight used it's girders. And, it also can reduce working hours for construction over 6months by applying the precast deck system. I will introduce the process of construction the longest this type bridge within the country named Seochon Bridge

  • PDF

Analysis of the variability of deflection of a prestressed composite bridge deck

  • Staquet, Stephanie;Detandt, Henri;Espion, Bernard
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.385-402
    • /
    • 2004
  • Nearly 400 composite railway bridge decks of a new kind belonging to the trough type with U-shaped cross section have been constructed in Belgium over the last fifteen years. The construction of these bridge decks is rather complex with the preflexion of precambered steel girders, the prestressing of a concrete slab and the addition of a 2nd phase concrete. Until now, they have been designed with a classical computation method using a pseudo-elastic analysis with modular ratios. Globally, they perform according to the expectations but variability has been observed between the measured and the computed camber of these bridge decks just after the transfer of prestressing and also at long-term. A statistical analysis of the variability of the relative difference between the measured camber and the computed camber is made for a sample of 36 bridge decks using no less than 10 variables. The most significant variables to explain this variability at prestressing are the ratio between the maximum tensile stress reached in the steel girders during the preflexion and the yield strength and the type of steel girder. For the same sample, the long-term camber under permanent loading is computed by two methods and compared with measurements taken one or two years after the construction. The camber computed by the step-by-step method shows a better agreement with the measured camber than the camber computed by the classical method. The purpose of the paper is to report on the statistical analysis which was used to determine the most significant parameters to consider in the modeling in order to improve the prediction of the behaviour of these composite railway bridge decks.

Optimum Design of Prestressed Concrete Girder Railway Bridge II : Optimum Section with 30m Span Length Accounting for Dynamic Stability (프리스트레스트 콘크리트 거더 철도교의 최적설계 II: 동적안정성을 고려한 30m 지간의 최적단면)

  • Lee Jong-Min;Kim Su-Hyun;Jung Jae-Dong;Lee Jong-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.102-109
    • /
    • 2006
  • The PSC girders which currently used at highway bridge have the standard cross sections about 25m, 30m and 35m span. Thus, in case of highway bridge design, the bridge designer can choose the adequate standard cross section according to constructional condition. However, in railway bridge design, there are limitations on reasonable bridge design considering circumstances of a construction site and conditions of location etc, because the PSC girders used at railway bridge have the cross section about only 25m span length. In this study, the optimum design for the PSC girder railway bridge with 30m span length has been performed. Also, in order to investigate the dynamic stability of railway bridge using the optimum section of PSC girder, dynamic analysis has been carried out. From the results of analysis, it is suggested to denote the optimum section which satisfied the structural safety, dynamic stability and economical efficiency all together.

Development and application of a hybrid prestressed segmental concrete girder utilizing low carbon materials

  • Yang, Jun-Mo;Kim, Jin-Kook
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.371-381
    • /
    • 2019
  • A hybrid prestressed segmental concrete (HPSC) girder utilizing low carbon materials was developed in this paper. This paper introduces the hybrid prestressing concept of pre-tensioning the center segment and assembling all segments by post-tensioning, as well as the development process of the low carbon HPSC girder. First, an optimized mix proportion of 60 MPa high strength concrete containing high volume blast furnace slag was developed, then its mechanical properties and durability characteristics were evaluated. Second, the mechanical properties of 2,400 MPa high strength prestressing strands and the transfer length characteristics in pre-tensioned prestressed concrete beams were evaluated. Third, using those low carbon materials and the hybrid prestressing concept, the HPSC girders were manufactured, and their structural performance was evaluated. A 30-m long HPSC girder for highway bridges and a 35-m long HPSC girder for railway bridges were designed, manufactured, and structurally confirmed as having sufficient strength and safety. Finally, five 35-m long HPSC girders were successfully applied to an actual railway bridge for the first time.

Shear behavior and analytical model of perfobond connectors

  • Zheng, Shuangjie;Liu, Yuqing;Yoda, Teruhiko;Lin, Weiwei
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.71-89
    • /
    • 2016
  • In steel and concrete composite girders, the load transfer between the steel beam and the concrete slab is commonly ensured by installing shear connectors. In this paper, to investigate the nonlinear behavior of perfobond connectors, a total of 60 push-out specimens were fabricated and tested with the variables for the hole diameter, the concrete strength, the thickness of concrete slab, the diameter, strength and existence of perforating rebar, the thickness, height and distance of perfobond ribs. The failure mode and the load-slip behavior of perfobond connectors were obtained. A theoretical model was put forward to express the load-slip relationship. Analytical formulas of shear capacity and peak slip were also proposed considering the interaction between the concrete dowel and the perforating rebar. The calculation results of the proposals agreed well with the experimental values.