• 제목/요약/키워드: concrete bridge column

Search Result 148, Processing Time 0.035 seconds

Yielding Effective Stiffness of Rectangular RC Bridge Columns for Design Seismic Force (설계지진력 해석시의 철근콘크리트 사각단면교각의 항복유효강성)

  • 배성용;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.941-946
    • /
    • 2001
  • The objectives of this study are to investigate effective stiffness of Rectangular reinforced concrete bridge columns. It is reasonable to use yielding effective stiffness of columns in seismic bridge design, especially in case that plastic hinges form at the bridge columns. In this study, the material nonlinear analysis was conducted for 3, 240 column sections of which variables were the concrete compressive stress, the steel yielding stress, the longitudinal steel location parameter, the longitudinal steel ratio, the axial load level, and the diameter of section. Based on the analytical results, an effective stiffness including two variables(longitudinal steel ratio and axial load ratio) was proposed by regression analyses, and it is compared with test results and the proposed equation for yielding effective stiffness of circular bridge columns.

  • PDF

Seismic Risk Analysis of Reinforced Concrete Bridge Piers using Local Damage (국부손상을 이용한 RC교각의 지진위험도 분석)

  • Lee, Dae-Hyoung;Kim, Hyun-Jun;Park, Chang-Ky;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.194-197
    • /
    • 2006
  • This study represents results of fragility curve development for 4-span continuous bridge. 2 type bridge model is chosen frame type and 2-roller 1-hinge type. To research the response of bridge under earthquake excitation, Monte Carlo simulation is performed to study nonlinear dynamic analysis. For nonlinear time history analysis a set of 150 synthetic time histories were generated. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. Five damage states were defined to express the condition of damage based on the actual experimental damage data of bridge column. As a result of this research, the value of damage probability corresponding to each damage state were determined and frame type bridge are favorable under seismic event.

  • PDF

Seismic Ductility of RC Circular Column-Bent Piers under Bidirectional Repeated Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진 연성도)

  • Park Chang Kyu;LEE Bum Gi;Song Hee Won;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.692-695
    • /
    • 2004
  • Seismic performance of reinforced concrete(RC) column bent piers to bidirectional seismic loadings was investigated experimentally. RC column bent piers represent one of the most popular forms of piers used in highway bridges. Further to series of previous experimental researches for the performance of single bridge columns subjected to seismic loadings, four column bent piers were constructed in 400 mm diameter and 2,000 mm height. Each pier has two circular supporting columns. These piers were tested under lateral load reversals with axial load of $0.1f_{ck}A_g$. Bidirectional lateral loadings were applied. The test parameters included: different transverse reinforcement contents and lap-spliced longitudinal reinforcing steels. Test results indicate that lap-splices of longitudinal reinforcing steels have significantly influence on hysteretic response of column bent piers. Column capacity changed with the level of transverse confinement, and bidirectional repeated loadings induced more strength and stiffness degradation than unidirectional repeated loading.

  • PDF

SEismic Performance of Circular RC Bridge Piers designed in Moderate on low Seismic Zone (중.약진 지역의 원형 내진 RC 교각의 내진성능평가)

  • 박종협;조창백;박희상;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.452-457
    • /
    • 2000
  • This research aims at evaluating the seismic performance of the existing R/C bridge piers, which were seismically designed in accordance with the provision of moderate confinement design code (Eurocode 8). The work presented in this paper experimentally investigates the ductility and hysteretic behavior of circular reinforced concrete columns with moderate confinement. Pseudo-dynamic tests have been carried out on two scaled R/C column specimens to investigate their hysteretic behavior and other seismic performance.

  • PDF

Seismic Performance of Flexural-Shear Circular Reinforced Concrete Bridge Piers (휨전단 거동을 보이는 원형 RC교각의 내진성능평가)

  • Song, Ho-Jin;Chung, Young-Soo;Kim, Yon-Gon;Kim, Hoon;Kim, Dae-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.823-828
    • /
    • 2002
  • Lap splice in plastic hinge region of RC bridge piers is inevitable because of the constructional joint between footing and column. RC circular columns with lap-splice in plastic hinge region are widely used in Korean highway bridges. It is, however, believed that there we not many experimental research works for nonlinear behavior of these columns subjected to earthquake motions. This study has been peformed to verify the effect of lap splice and confinement steel ratio for the seismic behaviour of reinforced concrete bridge piers. Quasi-static test have been done to investigate the physical seismic performance of RC bridge piers, such as displacement ductility.

  • PDF

Characteristic Behavior of High-Strength Reinforced Concrete Bridge Column under Simulated Seismic Loading (고강도 철근콘크리트 교각의 내진거동특성)

  • Ra Hong-Seong;Lee Kyoung-Joon;Ryu Hyo-Jin;Hwang Sun-Kyoung;Lee Chin-Ok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.22-27
    • /
    • 2004
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (ps = 0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/Po) and strength $(350kgf/cm^2,\;600kgf/cm^2)$. Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/Po) less than 0.2, the ratio of Mmax over Mad, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

Ductility Based Seismic Design of Circular R/C Bridge Piers (원형 철근콘크리트 교각의 연성도 내진설계)

  • Choi Jin Ho;Ko Seong Hyun;Hwang Jung Kil;Lee Jea Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.101-104
    • /
    • 2005
  • This study is to develop detailing guidelines based on ductility demand for reinforced concrete bridge columns in areas of low to moderate seismicity. The current seismic design criteria of the Korea Design Specifications for Highway Bridge (KDSHB 2005) adopted the seismic design concept and requirements of the AASHTO specifications. In order to obtain full ductile behavior under seismic loads, i.e. when applied seismic force is larger than design flexural strength of column section, a response modification factor (R=3 or 5) is used. In moderate seismicity regions, however, adopting the full ductility design concept sometimes results in construction problems due to reinforcement congestion. The objective of this paper is to suggest a new simplified seismic design of reinforced concrete bridge columns for moderate seismicity regions.

  • PDF

Seismic shear behavior of rectangular hollow bridge columns

  • Mo, Y.L.;Jeng, Chyuan-Hwan;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.429-448
    • /
    • 2001
  • An analytical model incorporating bending and shear behavior is presented to predict the lateral loading characteristic for rectangular hollow columns. The moment-curvature relationship for the rectangular hollow sections of a column is firstly determined. Then the nonlinear lateral load-displacement relationship for the hollow column can be obtained accordingly. In this model, thirteen constitutive laws for confined concrete and five approaches to estimate the shear capacity are used. A series of tests on 12 model hollow columns aimed at the seismic shear behavior are reported, and the test data are compared to the analytical results. It is found that the analytical model reflects the experimental results rather closely.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

Application of High Strength Concrete with 40MPa Compressive Strength to the Concrete Bridge Piers (설계강도 40MPa 고강도 콘크리트를 적용한 교량 교각 구조물의 시험시공)

  • Cheong, Hai-Moon;Ahn, Tae-Song;Kwon, Young-Rak;Whang, Jae-Hui;Suh, Bong-Young;Shim, Gi-Sul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.159-160
    • /
    • 2009
  • The application of 40MPa high strength concrete was accepted as a goal for improving durability and reducing column's section in concrete bridge piers. As a result of applying 40MPa high strength concrete, it could be achieved that column diameter and coping height were reduced into 0.6m, 0.4m, respectively. And crack by heat evolution of hydration did not generate, because of a careful quality and curing control of high strength concrete.

  • PDF