• Title/Summary/Keyword: concrete box structures

Search Result 173, Processing Time 0.277 seconds

Influence on the Movement of Fish by the Installation of Structures in Mountain Streams: Focused on Chinese Minnow (산지계류에 설치된 계상구조물이 어류의 이동에 미치는 영향: 버들치를 중심으로)

  • Ma, Ho-Seop;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.2
    • /
    • pp.224-232
    • /
    • 2019
  • The movement of fish to the upper and the lower parts of a mountain stream was investigated based on the installation of specific types of structures within the stream. The results indicated that as the flow rate increases after a rain, the height of the drop in an open-type structure, such as a concrete box, is decreased so that the floating fishes, such as the Chinese minnow fish, move relatively easily from the upper to the lower parts and from the lower to the upper parts of the stream. In contrast, the fishes released from an upper point of a wall-type structure with <1 m, such as rocks drop works and stone masonry for stream-grade stabilization, were trapped in the lower part of the stream and, even after the rainy season, it was difficult for the fish to move from the lower to the upper parts of the stream. In particular, the barrier-type structures ${\geq}3m$ limit the movement of fish, even when there are few drainage holes at the lower end of the dam, and there is no space for the fishes to communicate with each other, even when the flow rate is high; therefore, although the fish are active, they are restricted to move according to the type and characteristics of the structures. When installing structures in a mountain stream, the height of the structure must be low enough to allow the fish to communicate with each other or an open-type structure must be installed. The fish habitat and water conditions within the stream must be considered when designing the type and height of the in-stream structures.

Development of Parametric BIM Libraries for Civil Structures using National 2D Standard Drawings (국가 표준도를 이용한 토목 구조물 BIM 파라메트릭 라이브러리 구축에 관한 연구)

  • Kim, Cheong-Woon;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.4
    • /
    • pp.128-138
    • /
    • 2014
  • Development of infrastructure component libraries is a critical requirement for the accelerated adoption of BIM in the civil engineering sector. Libraries reduce the time for BIM model creation, allows accurate quantity take offs, and shared use of standard models in a project. However, such libraries are currently in very short supply in the domestic infrastructure domain. This research introduces library components for retaining walls and box culverts generated from 2D standard drawings made publicly available by MOLIT. Commercial BIM software was used to create the concrete geometry and rebar, and dimensional/volumetric parameters were defined to maximize the reuse and generality of the libraries. Use of the these libraries in a project context demonstrates that they allow accurate and quick quantity take offs, and easier management of geometric information through the use of a single library as to numerous 2D drawings. It also demonstrates the easy modification of the geometries of the components if and when they need to changed. However, the application also showed that some of the rebar components (stirrups and length wise rebars) do not get properly updated when concrete geometries are changed, demonstrating the limits of current software applications. The research provides evidence of the many advantages of using BIM libraries in the civil engineering, thus providing the incentive for further development of standard libraries and promoting the use of BIM in infrastructure projects.

An Elastic Static Analysis of Curved Girder Bridges by the Displacement Method (변위법(變位法)에 의한 곡선형교(曲線桁橋)의 정적탄성해석(靜的彈性解析))

  • Chung, Jin Hwan;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.121-131
    • /
    • 1986
  • The stiffness matrix of circularly curved frame elements including the warping effects is formulated by the solutions of vlasov's differential equations, and the procedure for the elastic static analysis of curved girder systems by the displacement method is presented. The validity of this method has been demonstrated by comparing the analysis results with other solutions. And if the tangential lines of the two frame element axes connected at any nodal point coincide, the transformation to the global coordinate system can be omitted when we analyze the structures consisting of circularly curved elements. The theory introduced in this thesis can be applied with sufficient accuracy to the structures built up with horizontally circular curved frame elements which have closed or open cross sections and are symmetric to the axis perpendicular to the plane of the curvature, such as prestressed concrete box girder bridges.

  • PDF

An Experimental Study on Joint Structures of Composite Truss Bridges (복합 트러스 교량의 연결구조에 대한 실험적 연구)

  • Shim, Chang Su;Park, Jae Sik;Kim, Kwang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.303-312
    • /
    • 2007
  • Steel box girder bridges are being commonly designed for medium-span bridges of span length. Composite truss bridges with steel diagonals instead of concrete webs can be an excellent design alternative, because it can reduce the dead weight of superstructures. One of the key issues in the design of composite truss bridges is the joint structureconnecting the diagonal steel members with the upper and lower concrete slabs. Because the connection has to carry concentrated combined loads and the design provisions for the joint are not clear, it is necessary to investigate the load transfer mechanism and the design methods for each limit state. There are various connection details according to the types of diagonal members. In this paper, the joint structure with group stud connectors welded on a gusset plate is used. Push-out tests for the group stud connectors of were performed. The test results showed that the current design codes on the ultimate strength ofthe stud connection can be used when the required minimum spacing of stud connectors is satisfied. Flexure-shear tests were conducted to verify the applicability of the design provisions for combined load effects to the strength of joint structures. To increase the pullout strength of the connection, bent studs were proposed and utilized for the edge studs in the group arrangement of the joint. The results showed that the details of the joint structure were enhanced. Thereafter, design guidelines were proposed.

Experimental study on structural integrity assessment of utility tunnels using coupled pulse-impact echo method (결합된 초음파-충격 반향 기법 기반의 일반 지하구 구조체의 건전도 평가에 관한 실험적 연구)

  • Jin Kim;Jeong-Uk Bang;Seungbo Shim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.479-493
    • /
    • 2023
  • The need for safety management has arisen due to the increasing number of years of operated underground structures, such as tunnels and utility tunnels, and accidents caused by those aging infrastructures. However, in the case of privately managed underground utility ducts, there is a lack of detailed guidelines for facility safety and maintenance, resulting in inadequate safety management. Furthermore, the absence of basic design information and the limited space for safety assessments make applying currently used non-destructive testing methods challenging. Therefore, this study suggests non-destructive inspection methods using ultrasonic and impact-echo techniques to assess the quality of underground structures. Thickness, presence of rebars, depth of rebars, and the presence and depth of internal defects are assessed to provide fundamental data for the safety assessment of box-type general underground structures. To validate the proposed methodology, different conditions of concrete specimens are designed and cured to simulate actual field conditions. Applying ultrasonic and impact signals and collecting data through multi-channel accelerometers determine the thickness of the simulated specimens, the depth of embedded rebar, and the extent of defects. The predicted results are well agreed upon compared with actual measurements. The proposed methodology is expected to contribute to developing safety diagnostic methods applicable to general underground structures in practical field conditions.

A Study on the Materials and Techniques of Outdoor Biotop for Environment-friendly Community (친환경 주거단지 외부공간의 비오톱 조성을 위한 재료 및 기법 연구)

  • Cho, Dong-Gil;Cho, Tong-Buhm
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.1
    • /
    • pp.72-81
    • /
    • 2007
  • This study mainly aims at suggesting plans applicable to the outdoor of environment-friendly communities in Korea by leveraging more natural conditions and materials when creating an outdoor biotop for an environment-friendly community and generating material types and development techniques enabling a natural circulation system. To this end, materials used in the outdoor of environment-friendly communities and traditional residential areas in Korea and biotop materials found in natural areas were examined. First, when the case examples of environment-friendly communities were reviewed, biotop spaces and materials that may function as habitats were hardly found. Materials used in biotop were mainly man-made structures made of artificial or processed materials, such as concrete, stones, bricks, woods and steels. Meanwhile, the outdoor space of traditional Korean villages had stone walls, soil walls, rock piles and composite piles, which composed of natural materials such as rocks, soil and plants, that naturally formed porous spaces along with the introduction of plants and provided habitats for a variety of insects. In natural areas, naturally created biotop spaces, such as rock piles, log piles, old tree deployment, branch piles, hay stacks and defoliated leaves, were found. Meanwhile, when spaces and materials available for biotop creation were reviewed to create an environment-friendly residential complex, they were divided into fences and hedges, green spaces between parks and residential buildings, ponds and waterscape spaces, zones separating pedestrian walks and roadways, breast walls and slope boundary, plant box and pergola. For each space, materials used for creating biotops and that were found in traditional Korean residential areas and natural areas were applied and suggested.

Load and Deflection Recovery Capacities of PSC Girder with Unbonded PS H-Type Steel

  • Kim, Jong Wook;Kim, Jang-Ho Jay;Kim, Tae-Kyun;Lee, Tae Hee;Yang, Dal Hun
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1336-1349
    • /
    • 2018
  • Generally, a precast prestressed concrete (PSC) beam is used as girders for short-to-medium span (less than 30 m) bridges due to the advantages of simple design and construction, reduction of construction budget, maintenance convenience. In order to increase the span length beyond 50 m of precast PSC girder, PSC hollow box girder with unbonded prestressed H-type steel beam placed at the compressive region is proposed. The unbonded compressive prestressing in the H-type steel beams in the girder is made to recover plastic deflection of PSC girder when the pre-stressing is released. Also, the H-steel beams allow minimization of depth-to-length ratio of the girder by reducing the compressive region of the cross-section, thereby reducing the weight of the girder. A quasi-static 3-point bending test with 4 different loading steps is performed to verify safety and plastic deflection recovery of the girder. The experimental results showed that the maximum applied load exceeded the maximum design load and most of the plastic deflection was recovered when the compressive prestressing of H-type steel beams is released. Also using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and restoration difficulty and cost of PSC girders should be significantly reduced. The study result and analysis are discussed in detail in the paper.

Dynamic characteristics analysis of CBGSCC bridge with large parameter samples

  • Zhongying He;Yifan Song;Genhui Wang;Penghui Sun
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.237-248
    • /
    • 2024
  • In order to make the dynamic analysis and design of improved composite beam with corrugated steel web (CBGSCC) bridge more efficient and economical, the parametric self-cyclic analysis model (SCAM) was written in Python on Anaconda platform. The SCAM can call ABAQUS finite element software to realize automatic modeling and dynamic analysis. For the CBGSCC bridge, parameters were set according to the general value range of CBGSCC bridge parameters in actual engineering, the SCAM was used to calculate the large sample model generated by parameter coupling, the optimal value range of each parameter was determined, and the sensitivity of the parameters was analyzed. The number of diaphragms effects weakly on the dynamic characteristics. The deck thickness has the greatest influence on frequency, which decreases as the deck thickness increases, and the deck thickness should be 20-25 cm. The vibration frequency increases with the increase of the bottom plate thickness, the web thickness, and the web height, the bottom plate thickness should be 17-23mm, the web thickness should be 13-17 mm, and the web height should be 1.65-1.7 5 m. Web inclination and Skew Angle should not exceed 30°, and the number of diaphragms should be 3-5 pieces. This method can be used as a new method for structural dynamic analysis, and the importance degree and optimal value range of each parameter of CBGSCC bridge can be used as a reference in the design process.

A Study on the Vibration Characteristics of Subway Structure by Train Load (열차 하중에 의한 지하철 구조물의 진동 특성에 관한 연구)

  • Park, Sung Woo;Park, Seung Su;Hwang, In Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.107-115
    • /
    • 2011
  • In this study, the vibration analysis of the underground box structures induced train movement is studied. In order to perform these analysis, dynamic data, which was measured when subway is in service, are gained by attaching accelerometers on the structure such as lower beam, lateral wall and upper slab. Also, accelerometers are attached on the lower beams and side walls of the gravel ballast and concrete ballast sections in order to compare vibration due to ballast materials. The vibration results of upper slabs and lower beams reveal that the vibration on the upper slabs is greater than the lower beams. Also, the results of the crack gauge on the upper slab show that crack width dose not change due to vibration, These means that the effect of the vibration on the structure is very limited. In order to evaluate the vibration of the structure, acceleration unit is converted to velocity unit comparing with the existing velocity data gained from the platforms.

FE Analysis on the Structural Behavior of the Single-Leaf Blast-Resistant Door According to Design Parameter Variation (설계변수에 따른 편개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Won-Woo;Park, Gi-Joon;Lee, Nam-Kon;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.259-272
    • /
    • 2019
  • Steel-concrete single-leaf blast-resistant doors are protective structures consisting of a steel box and reinforced concrete slab. By the domestic blast-resistant doors, the structure is not designed efficiently because few studies have examined the effects of variables, such as the blast pressure, rebar ratio, and steel plate thickness on the structural behavior. In this study, the structural behavior of the doors was analyzed using the FE method, and the support rotation and ductility ratio used to classify the structural performance were reviewed. The results showed that the deflection changes more significantly when the plate thickness increases than when the rebar spacing is a variable. This is because the strain energy absorbed by the door is reduced considerably when the plate thickness increases, and as a result, the maximum deflection becomes smaller. According to a comparison of the calculated values of the support rotation and the ductility ratio, the structural performance of the doors could be classified based on the support rotation of one degree and ductility ratio of three. On the other hand, more explosion tests and analytical studies will be needed to classify the damage level.