• Title/Summary/Keyword: concrete at hot weather

Search Result 19, Processing Time 0.026 seconds

Strength Development of Concrete Using Blast-Furnace Slag Cement under Various Curing Temperatures (양생온도변화에 따른 고로슬래그 시멘트를 사용한 콘크리트의 강도증진 성상)

  • 윤기원;유호범;한민철;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.163-166
    • /
    • 1999
  • In this paper, strength development of concrete using blast-furnace slag cement(BSC) and ordinary portland cement(OPC) are discussed under varius W/C and curing temperatures. According to the experimental results, strength development of BSC concrete is lower than that of OPC concrete in low temperature at early age and maturity. In high curing temperature, BSC concrete has higher strength development than that of low temperature regardless of the elapse of age and maturity. BSC has much effect on the strength development of concrete at the condition of mass concrete, hot weather concreting and the concrete products with the steam curing, which is influenced by high temperature.

  • PDF

Effect of Curing Temperature on Early Age Strength Development of the Concrete Using Fly Ash (양생온도가 플라이애시를 사용한 콘크리트의 초기강도발현에 미치는 영향)

  • Han, Min-Cheol;Shin, Byung-Chuel
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.105-114
    • /
    • 2010
  • The objective of the paper is to experimentally investigate the compressive strength of the concrete incorporating fly ash. Ordinary Portland cement(OPC). Water to binder ratio(W/B) ranging from 30% to 60% and curing temperature ranging from $-10^{\circ}{\sim}65^{\circ}C$ were also adopted for experimental parameters. Fly ash was replaced by 30% of cement contents. According to the results, strength development of concrete contained with fly ash is lower than that of plain concrete in low temperature at early age and maturity. In high curing temperature, the concrete with fly ash has higher strength development than that of low temperature regardless of the elapse of age and maturity. Fly ash can have much effect on the strength development of concrete at the condition of mass concrete, hot weather concreting and the concrete products for the steam curing.

Exothermic Curing System with Hot Wire in Cold Weather (열선을 사용하는 동절기 발열양생 평가시스템 개발)

  • Lee, Tae-Gyu;Lee, Jin-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.52-59
    • /
    • 2016
  • For almost of concrete structures by placing in cold weather, it is very important that the selection of curing method at early aged construction stage. The Exothermic curing method with hot wire and rapid hardening cement is used mostly to prevent the initial cracks and the strength decrease. Most of the construction sites, however, have not been applied to the optimal curing method caused by the simple approaches and the empirical judgements. Therefore, this paper has proposed a evaluation algorithm of the exothermic curing method for representing heating temperature, period, position of hot wire by analyzing the transient heat transfer solution. This has been implemented, moreover, using an object oriented programming language to develop structural analysis system taking account risk parameters. This system is composed of input module, database module, database store module, analysis module, and result generation module. Linkage interface between the central database and each of the related module is implemented by the visual c# concept. Graphic user interface and the relational database table are supported for user's convenience.

The Effect of Properties of The Compressive Strength of High-Strength Concrete under High Temperature conditions at an Early Age (초기고온이력이 고강도콘크리트의 압축강도특성에 미치는 영향)

  • Ham, Eun-Young;Kim, Gyu-Yong;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jea-Kang;Miyauchi, Hiroyuki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.115-116
    • /
    • 2013
  • Property of the compressive strength of high strength concrete was investigated in adiabatic temperature history considering hot-weather conditions. As a result, compressive strength of specimens subjected to high temperature history showed more than 120% at 3days of age compare to standard cured specimens. But, at 91days of age showed the incidence of strength less than 100%.

  • PDF

Properties of Hot Weather Nuclear Power Plant Concrete with Water Cooling Method and Retarding used (배합수 냉각방법 및 지연제 사용에 따른 서중 원전콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4602-4609
    • /
    • 2013
  • In summer and winter, the difference between the temperature during the day and that during the night is high, which leads to various problems during concrete placement, such as cracks and defects in the concrete as well as low durability and strength. Although nuclear power plant concrete is widely used for placement in all seasons, particular attention must be paid to its quality during the summer. Therefore, we evaluated the effects of a cooling method for mixing water, which is a commonly used hot weather precooling method, and the use of a retarder, on the characteristics of Nuclear Power Plant concrete. In the cooling method for mixing water, cold water at 5 was used, with 50% of the water content consisting of ice flakes. The effects of using a retarder were evaluated by reviewing the characteristics of the cement at the unset stage and after hardening. To evaluate the characteristics of the unset cement, we measured the slump, air volumes, setting times, and pressure strengths after hardening. Furthermore, we measured the heat of hydration at different temperatures; the loss of heat was minimized using insulation. Both the slump time and the complete ageing time of the air volume were found to be 120 min at $20^{\circ}C$ and 40 min at $40^{\circ}C$. In the case when the cooling method for mixing water was used and in the case when a retarder was used, the initial and final sets by penetration resistance were delayed, and the delay decreased with increasing air temperature. For the heat of hydration, the cooling method for mixing water not only lowered the maximum temperature but also delayed its attainment. However, the use of a retarder had no effect on the maximum temperature. Moreover, in the early ages (e.g., 3 and 7 days), the pressure strength of the concrete was lower than that of plain cement. However, the strength of 28-day concrete met the standard construction specifications.

Characteristic of Temperature History of Slab concrete by the Change of Insulation Curing Material and Difference of Heated cable Power Capacity. (단열양생재 변화 및 열선 전력용량 차이에 따른 슬래브 콘크리트의 온도이력 특성)

  • Jung, Eun-Bong;Ahn, Sang-Ku;Jung, Sang-Hyun;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.334-336
    • /
    • 2013
  • In this study, the temperature history was evaluated for the improved bubble sheets combining hot wires and PE films, which were developed under the extreme environmental condition of -10℃ and applied on the top surface of slab to prevent initial damage by freezing. Results can be summarized as follows. If improved bubble sheets combining hot wires with different capacity on double and quadruple bubble sheets are used, the temperature history for all materials decreased to 2~3℃ below zero but all test materials except Type 1 secured the accumulative temperature of 45° D·D at 7 days of material age, required for the prevention of initial freezing damage. This indicates the bubble sheets can prevent the initial damage by freezing.

  • PDF

The temperature distributions of the curing space according to blocking the opening of gang-form at the apartment in the cold weather (동절기 공동주택 갱폼 개구부 천막보양에 따른 보양 온도 분포 분석)

  • Cho, Hong-Bum;Song, Jin-Hee;Kim, Young-Sun;Choi, Ji-Su;Lee, Kyu-Nam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.140-141
    • /
    • 2022
  • CFD analysis was performed to analyze the temperature distribution of the inner space of the curing house according to blocking the opening of the gang-form with a tent in case of concrete pouring and heat curing of the apartment house during the winter season. If the gang-form opening is closed with a tent during internal heating using a hot air blower in the winter, the internal temperature rises compared to the non-reserved due to air-tightness of the curing spaces, and uniform temperature distribution can be ensured. In addition, it is possible to increase curing efficiency by reducing the amount of heat supplied and shortening the heating time.

  • PDF

A Study for Controlling Early-age Temperature Rise of the Concrete Pavement by Shadow Tent in Hot Weather Construction (차광막를 이용한 하절기 콘크리트포장의 초기온도 관리 방안연구)

  • Joh, Young-Oh;Kim, Hyung-Bae;Suh, Young-Chan;Ann, Sung-Soon
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.75-89
    • /
    • 2004
  • Long term performance of concrete pavement significantly depends on the given construction and environmental condition. It means that random cracks and extreme crack width due to inappropriate quality control at the early age might lead to decreasing the pavement service life. The temperature and moisture during the construction, cement and aggregate types, curing condition are major components to affect the quality of the concrete pavement at the early age. First of all, the high temperature differential, that is made by increasing air temperature and the heat of cement hydration, is known as the major contributor to severe cracks. In this study, tent covering was used for controlling temperature of the concrete slab. The field measurement data indicates that the effect of the tent covering is very significant to decrease possibilities of random crack occurrence and curling stress and enhance the long-term concrete strength. HIPERPAV(High PERformance PAVing software), a program predicting the strength and stress of an earty-age concrete pavement (72 hour after placement), is used for simulating the effects of tent covering. The HIPERPAVE results showed that the section with the tent covering has higher reliability than the section without the tent covering by 22.5%. In details, reliability is increased 72.5% (without the tent covering) to 95% (with the tent covering).

  • PDF

A Study on Field Applicability of Underground Electric Heating Mesh (매설용 전기 발열 매시의 융설 효과에 대한 현장 적용성 연구)

  • Suh, Young-Chan;Seo, Byung-Seok;Song, Jung-Kon;Cho, Nam-Hyun
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.19-27
    • /
    • 2013
  • PURPOSES : This study aims to investigate the snow-melt effects of an underground electric heater's snow-melt system via a field performance test, for evaluating the suitability of the system for use on a concrete pavement. The study also investigates the effectiveness of dynamic measures for clearing snow after snowfall events. METHODS : In order to check the field applicability, in November 2010, specimens were prepared from materials used for constructing concrete pavements, and underground electric heating meshes (HOT-mesh) were buried at depths of 50 mm and 100 mm at the site of the Incheon International Airport Construction Research Institute. Further, an automatic heating control system, including a motion sensor and pavement-temperature-controlled sensor, were installed at the site; the former sensor was intended for determining snow-melt effects of the heating control system for different snowfall intensities. Pavement snow-melt effects on snowy days from December 2010 to January 2011 were examined by managing the electric heating meshes and the heating control system. In addition, data on pavement temperature changes resulting from the use of the heating meshes and heating control system and on the dependence of the correlation between the outdoor air temperature and the time taken for the required temperature rise on the depth of the heating meshes were collected and analyzed. RESULTS : The effects of the heating control system's preheat temperature and the hot meshes buried at depths of 50 mm and 100 mm on the melting of snow for snowfalls of different intensities have been verified. From the study of the time taken for the specimen's surface temperature to increase from the preheat temperature ($0^{\circ}C$) to the reference temperature ($5{\sim}8^{\circ}C$) for different snowfall intensities, the correlation between the burial depth and outdoor air temperature has been determined to be as follows: Time=15.10+1.141Depth-6.465Temp CONCLUSIONS : The following measures are suggested. For the effective use of the electric heating mesh, it should be located under a slab it may be put to practical use by positioning it under a slab. From the management aspect, the heating control system should be adjusted according to weather conditions, that is, the snowfall intensity.