• 제목/요약/키워드: concrete anchor

검색결과 299건 처리시간 0.022초

아스팔트용 고강도 앵커시스템의 인발강도식 검토에 관한 기초적 연구 (A Fundamental Study on the Pullout Strength Equation of High Strength Anchor for Asphalt Pavement)

  • Choi, Jaemin;Lee, Seungyong;Sung, Kitae;Han, Youngdoo
    • 한국재난정보학회 논문집
    • /
    • 제13권3호
    • /
    • pp.313-321
    • /
    • 2017
  • 인장하중을 받는 아스팔트 도로용 고강도 앵커의 강도특성에 관한 기초 성능을 규명하기 위해 앵커 매립깊이, 포장두께, 앵커 직경, 앵커 종류, 실험 온도, 에폭시 종류, 그룹인발 수량 등을 실험변수로 하여 정적 인발실험을 실시하고, 아스팔트 앵커의 인발강도에 대하여 분석을 실시하였다. 그 결과 아스팔트 앵커의 강재강도는 기존 콘크리트 앵커의 강재강도식을 적용하면 1.08배 이상의 안전율을 확보할 수 있으므로 콘크리트 앵커 강재강도식을 사용하여도 무관한 것으로 나타났다. 아스팔트 앵커의 실험을 통해 얻은 인발하중을 제안식과 비교하면 약 ${\pm}10%$ 이내의 오차로 근사치를 나타내고 있다. 이로부터 아스팔트 앵커의 경우에도 콘크리트 앵커와 동일한 투영면적의 비가 성립될 수 있을 것으로 판단된다.

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

Pullout resistance of concrete anchor block embedded in cohesionless soil

  • Khan, Abdul J.;Mostofa, Golam;Jadid, Rowshon
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.675-688
    • /
    • 2017
  • The anchor block is a specially designed concrete member intended to withstand pullout or thrust forces from backfill material of an internally stabilized anchored earth retaining wall by passive resistance of soil in front of the block. This study presents small-scale laboratory experimental works to investigate the pullout capacity of a concrete anchor block embedded in air dry sand and located at different distances from yielding boundary wall. The experimental setup consists of a large tank made of fiberglass sheets and steel framing system. A series of tests was carried out in the tank to investigate the load-displacement behavior of anchor block. Experimental results are then compared with the theoretical approaches suggested by different researchers and codes. The appropriate placement of an anchor block and the passive resistance coefficient, which is multiplied by the passive resistance in front of the anchor block to obtain the pullout capacity of the anchor, were also studied.

철근콘크리트 교량의 충격전달장치 앵커시스템의 전단파괴거동 (Shear Fracture Behavior of Anchor Systems for Shock Transmission Unit in RC Bridge)

  • 김태상;송하원;변근주;안창모
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1097-1102
    • /
    • 2001
  • Seismic safety of continuous span concrete bridge can be enhanced by distributing a large seismic lateral load to each supporting pier. A new viscoelastic device called Shock Transmission Unit(STU), which is a simple cylinder-piston assembly packed with a so-called silicone putty compound, enables the lateral seismic load to be transmitted to the pier by installation of the device to movable bearings of the bridge. The seismic safety of concrete bridges having the STU depends on not only safety of the bridges globally but also safety of anchor systems which anchors the STU to concrete pier. An experimental investigation is performed to study the behavior of cast-in-place anchor and post-installed anchor subjected to shear load statically and cyclically according to different edge distance, embedment length, and anchor spacing. Finally, the experimental results are compared with results by design methods of ACI and CCD, and results by FEM analysis.

  • PDF

확공을 이용한 지압형 앵커의 인발거동 특성 연구 (The Study of Pullout-Behavior Characteristics of The Ground Anchor Using Expanded Hole)

  • 민경남;정찬묵;정대호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1502-1508
    • /
    • 2011
  • Ground anchor expands the hollow wall of settled part and has the structure which resists the designed tensile load by the bearing pressure generated by the wedge of the anchor body pressing in the expanded part. Such ground anchor has been recognized for stability and economicality since 1960s in technologically advanced nations such as Japan and Europe, and in 1970s, the Japan Society of Soil Engineering has established and announced the anchor concept map. The ground anchor introduced in Korea, however, has the structural problem where the tensile strength is comes only from the ground frictional force due to expansion of the wedge body. In an interval where the ground strength is locally reduced due to fault, discontinuation or such, this is pointed out as a critical weakness where the anchor body of around 1.0m must resist the tensile load. Also, in the installation of concrete block, the concentrated stress of concrete block constructed on the uneven rock surface causes damage, and many such issues in the anchor head have been reported. Thus, in this study, by using the expanded bit for precise expansion of settled part, the ground anchor system was completed so that the bearing pressure of ground anchor can be expressed as much as possible, and the bearing plate was inserted into the ground to resolve the existing issues of concrete block. Through numerical analysis and pullout test executed for verification of site applicability, the pullout-behavior characteristics of anchor was analyzed.

  • PDF

앵커플레이트가 콘크리트 파괴 강도에 미치는 영향 및 탄성기반 해석 모델에 대한 연구 (A Study on Effect of Anchor Plate on Concrete Breakout Capacity and Elasticity-Based Analysis Model of Anchor Plate)

  • 신지욱;유영찬;최기선;김호룡;김준희
    • 콘크리트학회논문집
    • /
    • 제25권4호
    • /
    • pp.381-388
    • /
    • 2013
  • 이 연구는 플레이트의 추가가 중단열 외벽 시스템과 같은 얇은 콘크리트 패널에 설치되는 단일 앵커 콘크리트의 파괴 강도에 미치는 영향을 평가하였다. 탄성론 기반의 단순화된 해석모델을 이용하여 CCD(concrete capacity design)이론을 통해 나타난 콘크리트 파괴 강도에 대한 플레이트의 휨 응력을 예측하였으며, 실험을 통해 나타난 플레이트의 휨 응력과 비교하였다. 앵커의 콘크리트 파괴 강도에 대한 실험은 100 mm의 얇은 패널을 대상으로 수행되었으며, 플레이트의 크기는 플레이트의 휨 응력과 항복 응력이 가장 근사값을 갖는 $PL130{\times}9mm$를 기준으로 계획되었다. 실험 결과를 통해, 플레이트의 너비 또는 두께 증가에 의해 콘크리트 파괴 강도는 향상되는 것으로 나타났지만, 콘크리트 파괴 강도의 향상 수준은 지속적으로 감소하는 것으로 나타났다. 또한, 탄성론 기반의 단순화된 탄성해석모델을 이용하여 해석과 실험 결과를 비교했을 때, 콘크리트 파괴 강도에 대한 플레이트의 영향을 비교적 잘 부합하는 것으로 나타났다.

Shear anchor behavior and design of an embedded concrete rack rail track for mountain trains

  • Hyeoung-Deok Lee;Jong-Keol Song;Tae Sup Yun;Seungjun Kim;Jiho Moon
    • Computers and Concrete
    • /
    • 제33권4호
    • /
    • pp.373-384
    • /
    • 2024
  • In this study, a novel mountain train system was developed that can run along a steep gradient of 180 ‰ and sharp curve with a minimum radius of 10 m. For this novel mountain train, an embedded precast concrete rack rail track was implemented to share the track with an automobile road and increase constructability in mountainous regions. The embedded rack rail track is connected to a hydraulically stabilized base (HSB) layer with shear anchors, which must have sufficient longitudinal resistance because they bear most of the traction forces originated from the rack rail and longitudinal loads owing to the steep gradient. In addition, the damage to the shear anchor parts, including the surrounding concrete, must be strictly limited under the service load because the maintenance of shear anchors inside the track is extremely difficult after installation. In this study, the focus was made on the shear anchor behavior and design an embedded rack rail track, considering the serviceability and ultimate limit states. Accordingly, the design loads for mountain trains were established, and the serviceability criteria of the anchor were proposed. Subsequently, the resistance and damage of the shear anchors were evaluated and analyzed based on the results of several finite element analyses. Finally, the design method of the shear anchors for the embedded rack rail track was established and verified.

전단력을 받는 선설치 앵커볼트의 콘크리트 파열파괴강도 평가 연구 (A Study on the Concrete Breakout Capacity of CIP Anchor Bolts under Shear Loading)

  • 박용명;전명희;최명국;김철환;김인기
    • 한국강구조학회 논문집
    • /
    • 제24권2호
    • /
    • pp.207-215
    • /
    • 2012
  • 전단하중을 받는 앵커볼트의 설계에 $45^{\circ}$ 콘파괴 이론이 그동안 적용되어 왔으나, 2,000년 이후부터 CCD(Concrete Capacity Design) 방법이 새로운 설계법으로 도입되었다. 그러나, 본 방법은 주로 소형 앵커볼트에 대한 실험 결과에 근거한 관계로 앵커볼트의 직경이 50mm 이하인 경우에 한해 적용이 허용되고 있다. 따라서 큰 연단거리를 갖는 중대형 앵커볼트에 대한 합리적인 콘크리트 파열파괴강도식의 도출이 필요한 실정이다. 본 연구에서는 M56 선설치 단일 앵커볼트로 연단거리 350mm에 대해 콘크리트 파열파괴강도 평가를 위해 4개의 시험체에 대해 실험을 수행하였다. 그리고, 본 실험 결과와 타 연구의 실험 결과를 종합하여 연단거리 750mm까지의 큰 연단거리에 대해 새로운 전단파괴강도식을 제안하였다.

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.

영구앵커와 연직 프리캐스트패널을 사용한 절토사면 친환경옹벽공법의 적용사례 (Application for Environment-friendly Retaining Wall Method Composed with Permanent Ground Anchor and Vertical Precast Panel in Cutting Slope Area)

  • 남홍기;정홍섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.87-96
    • /
    • 2010
  • PAP method is a combined measures which consist a anchored retaining wall method with permanent ground anchors and vertical precast concrete panels, step by step on the slope surface. And soil is back filled between slope and vertical precast panels. Therefore, this method is more effective than any other ground anchor reinforcing methods of slope stability, for example cross type concrete block ground anchor or buttress concrete block ground anchor method. Because of increasing effective anchor force and green tree planting.

  • PDF