• 제목/요약/키워드: concrete/reinforced concrete

검색결과 7,380건 처리시간 0.034초

철근 이중 콘크리트 보의 피로 거동 (Fatigue Behavior of Reinforced Dual Concrete Beam)

  • 박대효;이상희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.37-40
    • /
    • 2005
  • Reinforced dual concrete beam (RDC beam) is the reformed system that improves the overall structural properties of beam by partially applying high performance steel fiber reinforced concrete (HPSFRC) in the lower tension part of conventional reinforced concrete beam (RC beam). Fatigue test was done to prove the structural superiority of RDC beam. As a result of fatigue test, the deflection of RDC beam was decreased obviously and the slope of number of cycle-deflection relation curve of RDC beam was increased gently in comparison with RC beam.

  • PDF

파이버모델에 의한 철근콘크리트 구조물의 비선형 파괴해석 (Nonlinear Failure Analysis of Reinforced Concrete Structures using Fiber Model)

  • 송하원;김일철;변근주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.127-134
    • /
    • 1998
  • The objectives of this paper is to analyze the reinforced concrete structures by using fiber model. In this study, the fiber modeling techniques including modeling of support conditions are studied. In order to verify the modeling techniques, analysis results obtained for reinforced concrete cantilever beam and reinforced concrete T-girder bridge under cyclic loading are compared with experimental results from full scale test. From the comparison, it is shown that the modeling techniques in this study can be well applied to the nonlinear failure analysis of reinforced concrete structures with porper modifications.

  • PDF

라텍스 혼입률에 따른 철근콘크리트의 휨파괴 거동특성 (Flexural Fracture Properties of Reinforced Concrete Beam with Latex Contents)

  • 정원경;김동호;이주형;임홍범;윤경구
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.177-184
    • /
    • 2002
  • Reinforced concrete(R/C) is commonly used to structures because they have many merits that compressive strength, economy and so on. However, reinforced concrete has a crack at the tensile section which is due to the relatively lower tensile strength than its compressive strength Latex modified concrete(LMC) has higher tensile and flexural strength than the ordinary portland cement, due to the interconnections of hydrated cement and aggregates by a film of latex particles. The purpose of this study was to investigate the flexural behavior of reinforced concrete beam with latex modified concrete, having the main experimental variables such as concrete types(ordinary portland cement concrete, latex modified concrete), latex contents(0%, 15%), flexural steel ratios(0.012, 0.0235), and with/without shear reinforcement. The beam of LMC showed considerably higher initial cracking loads and ductility than that of OPC, but, similar to ultimate strength and deflection. This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation. The beam with latex modified concrete could be adopted at field for controlling and reducing the tensile crack due to its higher tensile strength.

  • PDF

Bond behavior of PP fiber-reinforced cinder concrete after fire exposure

  • Cai, Bin;Wu, Ansheng;Fu, Feng
    • Computers and Concrete
    • /
    • 제26권2호
    • /
    • pp.115-125
    • /
    • 2020
  • To reduce the damage of concrete in fire, a new type of lightweight cinder aggregate concrete was developed due to the excellent fire resistance of cinder. To further enhance its fire resistance, Polypropylene (PP) Fibers which can enhance the fire resistance of concrete were also used in this type of concrete. However, the bond behavior of this new type of concrete after fire exposure is still unknown. To investigate its bond behavior, 185 specimens were heated up to 22, 200, 400, 600 or 800℃ for 2 h duration respectively, which is followed by subsequent compressive and tensile tests at room temperature. The concrete-rebar bond strength of C30 PP fiber-reinforced cinder concrete was subsequently investigated through pull-out tests after fire exposure. The microstructures of the PP fiber-reinforced cinder concrete and the status of the PP fibre at different temperature were inspected using an advanced scanning electron microscopy, aiming to understand the mechanism of the bonding deterioration under high temperature. The effects of rebar diameter and bond length on the bond strength of PP fiber-reinforced cinder concrete were investigated based on the test results. The bond-slip relation of PP fiber-reinforced cinder concrete after exposure at different temperature was derived based on the test results.

Tensile Properties of Fiber Reinforced Concrete

  • Cho, Baik-Soon;Back, Sung-Yong;Park, Hyun-Jung
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.85-93
    • /
    • 2000
  • Potentially significant mechanical improvements in tension can be achieved by the incorporation of randomly distributed, short discrete fibers in concrete. The improvements due to the incorporation fibers significantly influence the composite stress - strain ($\sigma$-$\varepsilon$) characteristics. In general incorporating fibers in a plain concrete has relatively small effect on its precracking behavior. It, however, alters its post-cracking behavior quite significantly, resulting in greatly improved ductility, crack controls, and energy absorption capacity (or toughness). Therefore, a thorough understanding the complete tensile stress - strain ($\sigma$-$\varepsilon$) response of fiber reinforced concrete is necessary for proper analysis while using structural components made with fiber reinforced concrete. Direct tensile stress applied to a specimen is in principle the simplest configuration for determining the tensile response of concrete. However, problems associated with testing brittle materials in tension include (i) the problem related to gripping of the specimen and (ii) the problem of ensuring centric loading. Routinely, indirect tension tests for plain concrete, flexural and split-cylinder tests, have been used as simpler alternatives to direct uniaxial tension test. They are assumed to suitable for fiber reinforced concrete since typically such composites comprise 98% by volume of plain concrete. Clearly since the post-cracking characteristics are significantly influenced by the reinforcing parameters and interface characteristics, it would be fundamentally incorrect to use indirect tensile tests for determining the tensile properties of fiber reinforced concrete. The present investigation represents a systematic look at the failure and toughening mechanisms and macroscopic stress - strain ($\sigma$-$\varepsilon$) characteristics of fiber reinforced concrete in the uniaxial tension test. Results from an experimental parametric study involving used fiber quantity, type, and mechanical properties in the uniaxial tension test are presented and discussed.

  • PDF

Predictions of Seismic Behavior of Reinforced Concrete Bridge Columns

  • 김태훈;김운학;이광명;신현목
    • 콘크리트학회논문집
    • /
    • 제16권3호
    • /
    • pp.441-450
    • /
    • 2004
  • The objectives of this study are to investigate the seismic behavior of reinforced concrete bridge columns and to provide the data for developing improved seismic design criteria. The accuracy and objectivity of the assessment process can be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The low-cycle fatigue damage of both concrete and reinforcing bars has been also considered in order to predict a reliable seismic behavior. The proposed numerical method for the prediction of seismic behavior of reinforced concrete bridge columns is verified by comparison with the reliable experimental results.

Review on the Fire Resistance and Pumpability Performance of Fiber Reinforced High Strength Concrete

  • Kwon, Hae-Won;Kim, Young-Su
    • 한국건축시공학회지
    • /
    • 제13권1호
    • /
    • pp.58-65
    • /
    • 2013
  • Currently, many high-rise buildings are built in Korea for land-efficient utilization and vista. In high-rise buildings this tall, the use of high-strength concrete is essential to reduce the cross-section of structure members and secure axial load. However, this high strength concrete is vulnerable to spalling by fire, due to the water vapor pressure caused by the very high temperature in fire. To prevent this, the main method used is to reinforce the concrete with fiber. However, there has been little research on the pumpability of fiber reinforced high strength concrete. For this reason, this study features a performance review based on the properties and pumpability of fiber reinforced high strength concrete. In addition, the parameter of rheology was measured by extracting mortar from the concrete, and friction factor was measured through a 400 m horizontal pipe pumping test using the fiber reinforced high strength concrete. The basic information on fiber reinforced high strength concrete that we obtain through the experiments and review will contribute to the field.

An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams

  • Varshney, L.K.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.751-763
    • /
    • 2019
  • Steel-concrete composition is widely used in the construction due to efficient utilization of materials. The service load behavior of composite structures is significantly affected by cracking, creep and shrinkage effects in concrete. In order to control these effects in concrete slab, an efficient and novel strategy has been proposed by use of fiber reinforced concrete near interior supports of a continuous beam. Numerical study is carried out for the control of cracking, creep and shrinkage effects in composite beams subjected to service load. A five span continuous composite beam has been analyzed for different lengths of fiber reinforced concrete near the interior supports. For this purpose, the hybrid analytical-numerical procedure, developed by the authors, for service load analysis of composite structures has been further improved and generalized to make it applicable for composite beams having spans with different material properties along the length. It is shown that by providing fiber reinforced concrete even in small length near the supports; there can be a significant reduction in cracking as well as in deflections. It is also observed that the benefits achieved by providing fiber reinforced concrete over entire span are not significantly more as compared to the use of fiber reinforced concrete in certain length of beam near the interior supports in continuous composite beams.

셀룰로우스섬유보강 콘크리트의 소성수축 균열에 관한 실험적 연구 (Experimental Study for Plastic Shrinkage Cracking of Cellulose Fiber Reinforced Concrete)

  • 원종필;박찬기;안태송
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.319-323
    • /
    • 1998
  • Plastic shrinkage cracking is a major concern for concrete, especially for flat structures as highway pavement, slabs for parking garages, and walls. One of the methods to reduce the adverse effect of plastic shrinkage cracking is to reinforced concrete with short randomly distributed fibers. The contribution of cellulose fiber to the plastic shrinkage crack reduction potential of cement composites and its evaluation are presented in this paper. The effects of differing amounts of fibers(0.9kg/㎥, 1.3kg/㎥, 1.5kg/㎥) were studied. The results of tests of the cellulose fiber reinforced concrete were compared with plain concrete and polypropylene fiber reinforced concrete. Results indicated that cellulose fiber reinforcement showed an ability to reduce the total area and maximum crack width significantly(as compared to plain concreted to plain concrete and polypropylene fiber concrete).

  • PDF

Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.477-485
    • /
    • 2018
  • This study aims to investigate the influence of individual and hybrid fiber on the local bond-slip behavior of medium and high strength concrete after exposure to different high temperatures. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths in the pullout specimens were three times the bar diameter. The parameters investigated include concrete type (control group: ordinary concrete; experimental group: fiber concrete), concrete strength, fiber type and targeted temperature. The test results showed that the ultimate bond stress in the local bond stress versus slip curve of the high strength fiber reinforced concrete was higher than that of the medium strength fiber reinforced concrete. In addition, the use of hybrid combinations of steel fiber and polypropylene fiber can enhance the residual bond strength ratio of high strength concrete.