• Title/Summary/Keyword: conceptual algorithm

Search Result 155, Processing Time 0.026 seconds

Aesthetic Implications of the Algorithm Applied to New Media Art Works : A Focus on Live Coding (뉴미디어 예술 작품에 적용된 알고리즘의 미학적 함의 : 라이브 코딩을 중심으로)

  • Oh, Junho
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.119-130
    • /
    • 2013
  • This paper researches the algorithm, whose materiality and expressiveness can be obtained through live coding. Live coding is an improvised genre of music that generates sounds while writing code in real time and projecting it onto a screen. Previous studies of live coding have focused on the development environment to support live coding performance effectively. However, this study examines the aesthetic attitude immanent in the realization of the algorithm through analyzing mostly used languages such as ChucK, Impromtu, and the visualization of live code and cases of "aa-cell" and "slub" performance. The aesthetic attitudes of live coding performance can be divided into algebraic and geometric attitudes. Algebraic attitudes underline the temporal development of concepts; geometric attitudes highlight the materialization of the spatial structure of concepts through image schemas. Such a difference echoes the tension between conception and materiality, which appears in both conceptual and concrete poetry. The linguistic question of whether conception or materiality is more greatly emphasized defines the expressiveness of the algorithm.

A Study on the Gradual Differentiation in Parametric Design (패러매트릭 디자인에서의 점진적 조형특성 연구)

  • Kim, Yong-Hak;Ahn, Seong-Mo
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.2
    • /
    • pp.175-185
    • /
    • 2018
  • The purpose of this study is to analyze the concept of 'Gradual Differentiation' in parametric design in terms of pure model logic and thus describe the distinctive feature from the previous design method. To meet the purpose, it explores external cases like gradual factor identified in natural phenomenon and artworks and define the inherent model principles into "Self-similarity', "Correlation', and 'Temporality' by examining these features in terms of algorithm. Meanwhile, it identified the principle of gradual model representation in parametric design within a single system called 'Attractor System' by applying these three concepts into specific methods of parametric design, and by interpreting the logical structure through the association among 'Attractor', 'Field', and 'Differentiation'. The creative utilization of parameter shows that gradual model process in parametric design does not mean a passive "conversion process" merely replacing natural parameter with algorithm; rather, it refers to an active "generating process" creating new meanings and value. By continuing this process of conceptual understanding and insight, creative perspective and practical ability to interpret parameter can be improved.

Optimal Home Positioning Algorithm for a 6-DOF Eclipse-II Motion Simulator (6-자유도 Eclipse-II 모션 시뮬레이터의 최적 원점 복귀 알고리즘)

  • Shin, Hyun-Pyo;Kim, Jong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.441-448
    • /
    • 2012
  • This paper describes the optimal home positioning algorithm of Eclipse-II, a new conceptual parallel mechanism for motion simulator. Eclipse-II is capable of translation and 360 degrees continuous rotation in all directions. In unexpected situations such as emergency stop, riders have to be resituated as soon as possible through a shortest translational and rotational path because the return paths are not unique in view of inverse kinematic solution. Eclipse-II is man riding. Therefore, the home positioning is directly related to the safety of riders. To ensure a least elapsed time, ZYX Euler angle inverse kinematics is applied to find an optimal home orientation. In addition, the subsequent decrease of maximum acceleration and jerk values is achieved by combining the optimal return path function with cubic spline, which consequently reduces delivery force and vibration to riders.

A Tailless UAV Multidisciplinary Design Optimization Using Global Variable Fidelity Modeling

  • Tyan, Maxim;Nguyen, Nhu Van;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.662-674
    • /
    • 2017
  • This paper describes the multidisciplinary design optimization (MDO) process of a tailless unmanned combat aerial vehicle (UCAV) using global variable fidelity aerodynamic analysis. The developed tailless UAV design framework combines multiple disciplines that are based on low-fidelity and empirical analysis methods. An automated high-fidelity aerodynamic analysis is efficiently integrated into the MDO framework. Global variable fidelity modeling algorithm manages the use of the high-fidelity analysis to enhance the overall accuracy of the MDO by providing the initial sampling of the design space with iterative refinement of the approximation model in the neighborhood of the optimum solution. A design formulation was established considering a specific aerodynamic, stability and control design features of a tailless aircraft configuration with a UCAV specific mission profile. Design optimization problems with low-fidelity and variable fidelity analyses were successfully solved. The objective function improvement is 14.5% and 15.9% with low and variable fidelity optimization respectively. Results also indicate that low-fidelity analysis overestimates the value of lift-to-drag ratio by 3-5%, while the variable fidelity results are equal to the high-fidelity analysis results by algorithm definition.

A Study on the Security Framework for IoT Services based on Cloud and Fog Computing (클라우드와 포그 컴퓨팅 기반 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1928-1939
    • /
    • 2017
  • Fog computing is another paradigm of the cloud computing, which extends the ubiquitous services to applications on many connected devices in the IoT (Internet of Things). In general, if we access a lot of IoT devices with existing cloud, we waste a huge amount of bandwidth and work efficiency becomes low. So we apply the paradigm called fog between IoT devices and cloud. The network architecture based on cloud and fog computing discloses the security and privacy issues according to mixed paradigm. There are so many security issues in many aspects. Moreover many IoT devices are connected at fog and they generate much data, therefore light and efficient security mechanism is needed. For example, with inappropriate encryption or authentication algorithm, it causes a huge bandwidth loss. In this paper, we consider issues related with data encryption and authentication mechanism in the network architecture for cloud and fog-based M2M (Machine to Machine) IoT services. This includes trusted encryption and authentication algorithm, and key generation method. The contribution of this paper is to provide efficient security mechanisms for the proposed service architecture. We implemented the envisaged conceptual security check mechanisms and verified their performance.

Integer Ambiguity Search Technique Using SeparatedGaussian Variables

  • Kim, Do-Yoon;Jang, Jae-Gyu;Kee, Chang-Don
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • Real-Time Kinematic GPS positioning is widely used for many applications.Resolving ambiguities is the key to precise positioning. Integer ambiguity resolution isthe process of resolving the unknown cycle ambiguities of double difference carrierphase data as integers. Two important issues of resolving are efficiency andreliability. In the conventional search techniques, we generally used chi-squarerandom variables for decision variables. Mathematically, a chi-square random variableis the sum of mutually independent, squared zero-mean unit-variance normal(Gaussian) random variables. With this base knowledge, we can separate decisionvariables to several normal random variables. We showed it with related equationsand conceptual diagrams. With this separation, we can improve the computationalefficiency of the process without losing the needed performance. If we averageseparated normal random variables sequentially, averaged values are also normalrandom variables. So we can use them as decision variables, which prevent from asudden increase of some decision variable. With the method using averaged decisionvalues, we can get the solution more quicklv and more reliably.To verify the performance of our proposed algorithm, we conducted simulations.We used some visual diagrams that are useful for intuitional approach. We analyzedthe performance of the proposed algorithm and compared it to the conventionalmethods.

Real-time Speed Limit Traffic Sign Detection System for Robust Automotive Environments

  • Hoang, Anh-Tuan;Koide, Tetsushi;Yamamoto, Masaharu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.237-250
    • /
    • 2015
  • This paper describes a hardware-oriented algorithm and its conceptual implementation in a real-time speed limit traffic sign detection system on an automotive-oriented field-programmable gate array (FPGA). It solves the training and color dependence problems found in other research, which saw reduced recognition accuracy under unlearned conditions when color has changed. The algorithm is applicable to various platforms, such as color or grayscale cameras, high-resolution (4K) or low-resolution (VGA) cameras, and high-end or low-end FPGAs. It is also robust under various conditions, such as daytime, night time, and on rainy nights, and is adaptable to various countries' speed limit traffic sign systems. The speed limit traffic sign candidates on each grayscale video frame are detected through two simple computational stages using global luminosity and local pixel direction. Pipeline implementation using results-sharing on overlap, application of a RAM-based shift register, and optimization of scan window sizes results in a small but high-performance implementation. The proposed system matches the processing speed requirement for a 60 fps system. The speed limit traffic sign recognition system achieves better than 98% accuracy in detection and recognition, even under difficult conditions such as rainy nights, and is implementable on the low-end, low-cost Xilinx Zynq automotive Z7020 FPGA.

Estimation of the WGR Multi-dimensional Precipitation Model Parameters using the Genetic Algorithm (유전자 알고리즘을 이용한 WGR 다차원 강우모형의 매개변수 추정)

  • Jeong, Gwang-Sik;Yu, Cheol-Sang;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.473-486
    • /
    • 2001
  • The WGR model was developed to represent meso-scale precipitation. As a conceptual model, this model shows a good link between atmospheric dynamics and statistical description of meso-scale precipitation(Waymire et al., 1984). However, as it has maximum 18 parameters along with its non-linear structure, its parameter estimation has been remained a difficult problem. There have been several cases of its parameter estimation for different fields using non-linear programming techniques(NLP), which were also difficult tasks to hamper its wide applications. In this study, we estimated the WGR model parameters of the Han river basin using the genetic algorithm(GA) and compared them to the NLP results(Yoo and Kwon, 2000). As a result of the study, we can find that the sum of square error from the GA provide more consistent parameters to the seasonal variation of rainfall. Also, we can find that the higher rainfall amount during summer season is closely related with the arrival rate of rain bands, not the rain cell intensity.

  • PDF

An intelligent optimization method for the HCSB blanket based on an improved multi-objective NSGA-III algorithm and an adaptive BP neural network

  • Wen Zhou;Guomin Sun;Shuichiro Miwa;Zihui Yang;Zhuang Li;Di Zhang;Jianye Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3150-3163
    • /
    • 2023
  • To improve the performance of blanket: maximizing the tritium breeding rate (TBR) for tritium self-sufficiency, and minimizing the Dose of backplate for radiation protection, most previous studies are based on manual corrections to adjust the blanket structure to achieve optimization design, but it is difficult to find an optimal structure and tends to be trapped by local optimizations as it involves multiphysics field design, which is also inefficient and time-consuming process. The artificial intelligence (AI) maybe is a potential method for the optimization design of the blanket. So, this paper aims to develop an intelligent optimization method based on an improved multi-objective NSGA-III algorithm and an adaptive BP neural network to solve these problems mentioned above. This method has been applied on optimizing the radial arrangement of a conceptual design of CFETR HCSB blanket. Finally, a series of optimal radial arrangements are obtained under the constraints that the temperature of each component of the blanket does not exceed the limit and the radial length remains unchanged, the efficiency of the blanket optimization design is significantly improved. This study will provide a clue and inspiration for the application of artificial intelligence technology in the optimization design of blanket.

Shipboard Fire Evacuation Route Prediction Algorithm Development (선박 화재시 승선자 피난동선예측을 위한 알고리즘 개발 기초연구)

  • Hwang, Kwang-Il;Cho, So-Hyung;Ko, Hoo-Sang;Cho, Ik-Soon;Yun, Gwi-Ho;Kim, Byeol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.519-526
    • /
    • 2018
  • In this study, an algorithm to predict evacuation routes in support of shipboard lifesaving activities is presented. As the first step of algorithm development, the feasibility and necessity of an evacuation route prediction algorithm are shown numerically. The proposed algorithm can be explained in brief as follows. This system continuously obtains and analyzes passenger movement data from the ship's monitoring system during non-disaster conditions. In case of a disaster, evacuation route prediction information is derived using the previously acquired data and a prediction tool, with the results provided to rescuers to minimize casualties. In this study, evacuation-related data obtained through fire evacuation trials was filtered and analyzed using a statistical method. In a simulation using the conventional evacuation prediction tool, it was found that reliable prediction results were obtained only in the SN1 trial because of the conceptual and structural nature of the tool itself. In order to verify the validity of the algorithm proposed in this study, an industrial engineering tool was adapted for evacuation characteristics prediction. When the proposed algorithm was implemented, the predicted values for average evacuation time and route were very similar to the measured values with error ranges of 0.6-6.9 % and 0.6-3.6 %, respectively. In the future, development of a high-performance evacuation route prediction algorithm is planned based on shipboard data monitoring and analysis.