• Title/Summary/Keyword: concept of angle

Search Result 410, Processing Time 0.045 seconds

Understanding of Degree and Radian by Measuring Arcs (호의 측도로 도(Degree)와 라디안 이해하기)

  • Choi, Eun Ah;Kang, Hyangim
    • School Mathematics
    • /
    • v.17 no.3
    • /
    • pp.447-467
    • /
    • 2015
  • The purpose of this study is to examine how the learning experience understanding degree and radian as the measurement of arc affects the conceptual understanding of radian and measuring angle. For this purpose, we investigated pre-service teachers' understanding about measurement of angle using a length of arc, and then conducted a teaching experiment with two middle school students. The results of analyzing pre-service teachers' and students' response are as follows. Students' experience interpreting the concept of degree into measurement of arc had a positive effect on understanding of radian and students' learning process in which they got measurement of angle as measurement of arc enabled conceptual understanding of 'linear measuring'. Also a circle context and a strategy dividing by arc operated as effective strategies for solving various problems about an angle. Finally, we confirmed that providing direct manipulative activities as a chance to explore relationships between an angle and arc measure can help students' conceptual understanding of measuring angle.

An International Comparison study in Mathematics Curriculum - Contents for Angle among the Korea, Singapore U.K., Australia and U.S. (수학 교육과정 국제 비교·분석 연구 - 한국, 싱가포르, 영국, 호주, 미국의 각 관련 내용 중심으로)

  • Choi, Eun;Kim, Seo Yeong;Kwon, Oh Nam
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.295-317
    • /
    • 2019
  • Angle concept is widely used in all mathematics curriculums and is a basic concept in geometric domain. Since angle have a multifaceted and affect subsequent learning, it is necessary for students to understand various angle concepts. In this study, Singapore, U.K., Australia, and U.S. are selected as comparable countries to examine the angle-related contents and learning process that appear in the curriculum as a whole, and then look at the perspectives and the size aspects of angle in detail and give implications to the Korean curriculum based on them. According to the analysis, the four countries except Korea, supplement angle, complement angle, angles on a straight line, angles at a point, and finding angle were explicitly covered in the curriculum. And most countries gradually covered angle-related contents over several years, compared to Korea which intensively studied in a particular school year. In common, definition of angle was described as static, measurement of angle was described as dynamic. But in Korean curriculum, dynamic views on angles are described later and less compared to other countries, and range of angle size was narrower than in other countries'. From this comparison, this study suggest to discuss how to place and develop various contents of characteristics of angle in curriculum, address the angle using both static and dynamic perspectives, and introduce the angle size as the amount of rotation to learn the reflex angle, $180^{\circ}$, $360^{\circ}$ angle.

HVDC System Design for AC Network Reactive Power Control (AC 계통 무효전력 제어를 위한 HVDC 시스템 설계)

  • Choi, Soon-Ho;Choi, Jang-Hum;Kim, Chan-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.8-20
    • /
    • 2013
  • This paper deals with the concept design of HVDC system for controlling AC network reactive power. HVDC system can control active power and reactive power and the control concept of reactive power is similar to SVC(Static Var Compensator). Reactive power is controlled by adjusting firing angle of HVDC system under the condition that AC filters are switched. Reactive power depends on AC voltage condition, considering the steady-state and transient state to maintain the stable operation of AC network in the viewpoint of voltage stability. Therefore, in the design stage of HVDC, the reactive power required in the AC network must be considered. For the calculation of operation angle in HVDC system, the expected reactive power demand and supply status is examined at each AC system bus. The required reactive power affects the determination of the operation angle of HVDC. That is, the range of "control deadband" of operation angle should have the capability supplying the required reactive power. Finally, the reactive power control concepts is applied to 1GW BTB Pyeongtaek-Dangjin HVDC system.

Optimisation of a novel trailing edge concept for a high lift device

  • Botha, Jason D.M.;Dala, Laurent;Schaber, S.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.329-343
    • /
    • 2015
  • This study aimed to observe the effect of a novel concept (referred to as the flap extension) implemented on the leading edge of the flap of a three element high lift device. The high lift device, consisting of a flap, main element and slat is designed around an Airbus research profile for sufficient take off and landing performance of a large commercial aircraft. The concept is realised on the profile and numerically optimised to achieve an optimum geometry. Two different optimisation approaches based on Genetic Algorithm optimisations are used: a zero order approach which makes simplifying assumptions to achieve an optimised solution: as well as a direct approach which employs an optimisation in ANSYS DesignXplorer using RANS calculations. Both methods converge to different optimised solutions due to simplifying assumptions. The solution to the zero order optimisation showed a decreased stall angle and decreased maximum lift coefficient against angle of attack due to early stall onset at the flap. The DesignXplorer optimised solution matched that of the baseline solution very closely. The concept was seen to increase lift locally at the flap for both optimisation methods.

Realization of Fractal/Angle Multiplexing using X-Y Galvano Mirrors and Evaluation of Random Access Performance in Holographic Digital Data Storage (X-Y 갈바노 미러를 이용한 홀로그래픽 저장 장치의 프랙탈/각 다중화 구현 및 임의 탐색 성능의 평가)

  • Choi, Jin-Young;Lee, Jae-Sung;Kim, Sang-Hoon;Kim, Jang-Hyun;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil;Park, Joo-Youn
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • Fractal/angle multiplexing is a $LiNBO_3$ crystal using a X-Y Galvano mirror, and the random access concept in fractal/angle multiplexing are discussed in this paper. First, the brief introduction of the designed holographic digital data storage system is presented. Then, the average access time concept for the storage system is newly defined, and the comparison of the average access time between the holographic storage and a conventional optical disk is performed. Second, the basic simulation and experiment to find the X-Y Galvano mirror dynamics are conducted. From this analysis, we find that the average access time in our HDDS which has 6 degree scan angle is about 5 msec. This result is very high performance when it compared with the average access time of a conventional optical disk. Finally, some recording results using fractal/angle multiplexing are presented, then, the relationship between bit error rate and angle mismatch for the each multiplexing are discussed.

  • PDF

Design of Path Tracking Controller for Underactuated Autonomous Underwater Vehicle Using Approach Angle Concept (접근 각도 개념을 이용한 과소 작동기 무인 잠수정의 경로 추적 제어기 설계)

  • Kim, Kyoung-Joo;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 2012
  • In this paper, we propose a method for designing the path tracking controller using an approach angle concept for an underactuated autonomous underwater vehicle (AUV). The AUV is controlled by the surge speed and yaw rate: there is no side thruster. To solve this underactuated AUV problem in the path tracking, we introduce an approach angle concept which makes the AUV converge to the reference path. And we design the path tracking controller using the proposed approach angle. To design the path tracking controller, we obtain the new vehicle's error dynamics in the body-fixed frame, and then design the path tracking controller based on Lypunov direct method. Finally, some simulation results demonstrate the effectiveness of the proposed controller.

앞전에서의 팽창파를 이용한 양항비의 개선에 대한 연구

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.19-22
    • /
    • 2016
  • Leading edge thrust is generally caused by passing air flow from lower to upper surface and it is required to have sufficient angle of attack for notable leading edge thrust. To produce leading edge thrust at low angle of attack, utilizing expansion wave accompanying low pressure is able to be a solution. Fore structure changes the direction of flow, and this flow passes the projected edge. As a result, from a perspective of the edge, it is able to have high angle of attack, and artificial expansion wave is generated. This concept shows 9.48% increase of L/D in inviscid flow, at Mach number 1.3 and angle of attack $1^{\circ}$ in maximum, and this model shows the 3.98% of increasement at angle of attack $2^{\circ}$. Although advantage of the artificial expansion wave decreased as angle of attack increase, it shows the possibility of aerodynamical improvement with artificial expansion wave.

  • PDF

A Study On the Phase Advance Angle of High Speed Operation for 7 Phase BLOC Motor Drives (7상 BLDC 전동기의 고속 운전시 개선된 진상각 보상 연구)

  • Kim, Hyun-Cheol;Oh, Hyung-Sik;Kim, Jang-Mok;Kim, Cheul-U
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1930-1936
    • /
    • 2007
  • According to previously published paper the phase advance angle is adopted to the BLDC motor drive with high speed. The report proposed describes the optimum algorism that phase current is in phase with the initial flat region of back EMF. This report studies the need of more leading phase advance angle compared with in phase concept between phase current and back EMF. In case of high reactance this report proposes the more phase advance angle than in phase. The test results more rms value of phase current and output power due to more phase advance angle than in phase. It will be helped the high power operation of BLDC motor at high speed.

A Study on Shoulder Joint Motions in the Caudal Gliding of Kaltenborn-Evjenth Concept (칼텐본-에비엔즈컨셉의 어깨관절 아래쪽미끄러뜨림 적용시 관절의 이동성 연구)

  • Choi, Wan-Suk;Park, Ju-Hyun;Jung, Bong-Jae;Moon, Ok-Kon;Min, Kyung-Ok;An, Ho-Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.427-433
    • /
    • 2012
  • This study aimed at identifying changes in the acromiohumeral distance (AHD) and arm when the caudal gliding gradeII and III of Kaltenborn-Evjenth Concept$^{(R)}$ are applied to the right glenohumeral joint. The humeral head moved down about 5mm from the initial position when the gliding gradeII was applied, and about 8mm from the initial position when the gliding gradeIII was applied. Although men showed a higher acromiohumeral distance per grade than women in comparisons by gender for the acromiohumeral distance, there was no significant difference in statistics. The Abduction angle improved about $10^{\circ}$ from the initial angle when the gliding gradeII was applied, and about $12^{\circ}$ from the initial angle when the gliding gradeIII was applied. Although women showed the abduction angle greater than men for every grade in comparisons by gender for the abduction angle, there was no significant difference in statistics. Based on the aforesaid findings, the extent of kinematic changes in the humeral head could be identified when the gliding grades were applied. Accordingly, it is considered that more scientific evidence based treatments could be expected if influences on the surrounding structures by these changes could be learned through more studies in the future.

The effect of aerodynamic characteristics on the insect wing tip trajectory in hovering flight (정지 비행에서의 곤충 날개 궤적에 따른 공기역학적 특성)

  • Cho, Hun-Kee;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1441-1445
    • /
    • 2008
  • Insect flight is adapted to cope with each circumstance by controlling a variety of the parameters of wing motion in nature. Many researchers have struggled to solve the fundamental concept of insect flight, but it has not been solved yet clearly. In this study, to find the most effective flapping wing kinematics, we conducted to analyze CFD data on fixing some of the optimal parameters of wing motion such as stoke amplitude, flip duration and wing rotation type and then controlled the deviation angle by fabricating wing tip motion. Although all patterns have the similar value of lift coefficient and drag coefficient, pattern A(pear-shape type) indicates the highest lift coefficient and pattern H(pear-shape type) has the lowest lift coefficient among four wing tip motions and three deviation angles. This result suggest that the lift and drag coefficient depends on the angle of attack and the deviation angle combined, and it could be explained by delayed stall effect.

  • PDF