• Title/Summary/Keyword: concentration of microbial particles

Search Result 26, Processing Time 0.028 seconds

A STUDY ON THE STABILITY, EFFICACY, AND EFFECT OF COLLOIDAL SILVER EMULSION

  • Yun, Kyung-Rho;Ji, Hong-Geun;Seo, Bong-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.75-95
    • /
    • 1999
  • A colloid refers to dispersed particles of a solid or liquid having the diameter of about $10^{-5}-10^{-7}cm$. Such colloidal silver is produced by electrolysis. In this paper, colloidal silvers of various concentrations according to charge amount and time are produced, and their anti-microbial activities are measured. And optimum conditions for emulsion are measured by varying the concentration of colloidal silvers. Further, stability of the emulsion is measured with a Zeta potential, chrome meter by applying colloidal silvers to creams (W/Si, O/W, MLV).

  • PDF

Isolation and characterization of bacteriophage infecting Lactobacillus plantarum KCCM 12116

  • Oh, Jiyoung;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.348-355
    • /
    • 2021
  • Bacteriophages (phages) are known determinants of kimchi microbial ecology. Lactobacillus plantarum is related to kimchi over-acidification during the late stages of kimchi fermentation. A phage infecting Lac. plantarum was isolated from kimchi and characterized. The phage population for kimchi in a market was 2.3 log particles/mL, which corresponded to 32% of the bacterial population on a log scale. The isolated phage was designated as ΦLP12116. ΦLP12116 which belonged to the Siphoviridae family and has a very narrow host range, infecting only Lac. plantarum. The phage was stable at a lactic acid concentration of 1.0% and pH 4.0 at 4℃, indicating that it could survive in kimchi. In the kimchi extract broth treated by the phage, the growth of Lac. plantarum KCCM 12116 was inhibited by 2.2 log CFU/mL compared to the growth in non-phage-treated broth. Therefore, this study suggests that the growth of Lac. plantarum, which is known as an acid-producing strain during late fermentation in kimchi, may be controlled using the phage.

A STUDY ON THE STABILITY, EFFICACY, AND EFFECT OF COLLOIDAL SILVER EMULSION

  • Yun, Kyung-Rho;Ji, Hong-Geun;Seo, Bong-Seok
    • Proceedings of the SCSK Conference
    • /
    • 1999.10a
    • /
    • pp.75-95
    • /
    • 1999
  • A colloid refers to dispersed particles of a solid or liquid having the diameter of about $10^{-5}$ - $10^{-7}$. Such colloidal silver is produced by electrolysis. In this paper. colloidal silvers of various concentrations according to charge amount and time are produced, and their anti-microbial activities are measured. And optimum conditions for emulsion are measured by varying the concentration of colloidal silvers. Further, stability of the emulsion is measured with a Zeta potential. chrome meter by applying colloidal silvers to creams (W/Si. O/W, MLV).

  • PDF

Influence of Iron Phases on Microbial U(VI) Reduction

  • Lee, Seung-Yeop;Baik, Min-Hoon;Lee, Min-Hee;Lee, Young-Boo;Lee, Yong-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.58-65
    • /
    • 2011
  • The bacterial uranium(VI) reduction and its resultant low solubility make this process an attractive option for removing U from groundwater. An impact of aqueous suspending iron phase, which is redox sensitive and ubiquitous in subsurface groundwater, on the U(VI) bioreduction by Shewanella putrefaciens CN32 was investigated. In our batch experiment, the U(VI) concentration ($5{\times}10^5M$) gradually decreased to a non-detectable level during the microbial respiration. However, when Fe(III) phase was suspended in solution, bioreduction of U(VI) was significantly suppressed due to a preferred reduction of Fe(III) instead of U(VI). This shows that the suspending amorphous Fe(III) phase can be a strong inhibitor to the U(VI) bioreduction. On the contrary, when iron was present as a soluble Fe(II) in the solution, the U(VI) removal was largely enhanced. The microbially-catalyzed U(VI) reduction resulted in an accumulation of solid-type U particles in and around the cells. Electron elemental investigations for the precipitates show that some background cations such as Ca and P were favorably coprecipitated with U. This implies that aqueous U tends to be stabilized by complexing with Ca or P ions, which easily diffuse and coprecipitate with U in and around the microbial cell.

An Investigation on Concentration of Airborne Microbes in a Hospital (병원내 공기중 미생물의 농도에 관한 조사연구)

  • 최종태;김윤신
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 1993
  • A survey was conducted to measure concentration of airborne microbe in a hospital using RSC air sampler during October~November 1991.The result was as follows: 1) In an agar strip GK-A media for total counts of microbial particles. The highest count were 1384 CFU/m$^3$ in the main lobby, followed by 912 CFU/m$^3$, in the obstetric room, 688 CFU/m$^3$ in 1CU. By gram staining, the distribution for organisms in the air were shown 74.1% in gram possitive cocci followed by 16.8%, in gram possitive bacilli 6.7% in gram negative bacilli and 4.7% in yeast, but low organism was detected in recovery room with 194 CFU/m$^3$. 2) In agar strip S media for Staphylococci the count at the main lobby was detected in the recovery room with 92 CFU/m$^3$, Tests of coagulase were negative Staphylococci with 78%, and positive Staphylococci with 22%. The Staphylococci were highly resistance to penicillin, ampicillin and sensitive to amikacin, cefazolin, gentamycin and chloramphenicol. 3) In agar strip C media for coliform bacteria the colony counts at the main lobby was 139 CFU/m$^3$ and treatment room was 190 CFU/m$^3$, most frequently isolated microorganisms were non fermentative bacilli. 4) In agar strip HS media for yeast and molds. Most frequently colony counts 17~76 CFU/m$^3$, 0.5% lactophenol cotton blue stains were shown unidentified 77.2%, 8.1%, in Penicillium 8.1% in Aspergillus, and 3.8% in mucor.

  • PDF

A Cytoplasmic Polyhedrosis Virus Isolated from the Oriental Tobacco Budworm, Heliothis assulta Guenee (Lepidoptera: Noctuidae) (담배나방 세포질다각체병 바이러스의 동정 및 병원성에 관한 연구)

  • 임대준;장동숙;최귀문;강석권
    • Korean journal of applied entomology
    • /
    • v.30 no.3
    • /
    • pp.219-226
    • /
    • 1991
  • A cytoplasmic polyhedrosis virus isolated from the oriental tobacco budworm, Heliothis assulta (HaCPV), was studied on morphology of the polyhedron and virus particles, analysis of viral protein and nucleic acid, and bioassay of the HaCPV to determine the feasibility of application as a microbial control agent. The shape of polyhedron was hexagonal ranging 0.5-3.7 ${\mu}m$ and the virus particles were icosahedral outline measured 55 nm in diameter. Polyhedral protein was composed of a major polypetide of 24.3 Kd and 5 minor components and virus particle had seven polypeptides ranging in 28.0 Kd-133. 6 Kd by the SDS-P AGE. The genome of virus was segmented with 10 double stranded RNA in the total mol. wt. of 18.08 Md ranging in 0.65 Md -2.79 Md. The $LC_{50}$ values of the HaCPV to the 3rd instar of H. assulta larvae were calculated to $2.895{\times}10^5PIBs/ml$. The $LT_{50}$ values in the concentration of $5.0{\times}10^{6}PIBs/ml$ was 16.4 days.

  • PDF

Investigation of influence of temperature and solid retention time on membrane fouling in MBR

  • Mirzavandi, Atoosa;Hazrati, Hossein;Ebrahimi, Sirous
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.179-189
    • /
    • 2019
  • This study aimed to investigate the effect of temperature and solid retention time (SRT) on membrane fouling in a membrane bioreactors (MBRs). For this purpose, a lab-scale submerged MBR system was used. This system operated at two SRTs of 15 and 5 days, three various temperatures (20, 25 and $30^{\circ}C$) and hydraulic retention time (HRT) of 8 h. The results indicated that decreased the cake layer resistance and increased particles size of foulant due to increasing temperature and SRT. Fourier transform infrared (FTIR) analysis show that the cake layer formed on the membrane surface, contained high levels of proteins and especially polysaccharides in extracellular polymeric substances (EPS) but absorbance intensity of EPS functional groups decreased with temperature and SRT. EEM analysis showed that the peak on the range of Ex/Em=220-240/350-400 in SRT of 15 and temperature of $30^{\circ}C$ indicates the presence of fulvic acid in the cake. In addition, as the temperature rise from 20 to $30^{\circ}C$, concentration of soluble microbial products (SMP) increased and COD removal reached 89%. Furthermore, the rate of membrane fouling was found to increase with decreasing temperature and SRT.

Evaluation of Three Feasible Biodegradation Models for Food Waste

  • Kwon, Sung-Hyun;Cho, Daechul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • Food waste is produced from food factories, food services, and home kitchens. The generated mass reached 5.4 million tons/year in 2020. The basic management technology for such waste has been biological degradation under an anaerobic environment. However, the whole process is intrinsically slow and considerably affected by the inner physicochemical properties of the waste and other surrounding conditions, which makes optimization of the process difficult. The most promising options to counter this massive generation of waste are eco-friendly treatments or recycling. As a preliminary step for these options, attempts were made to evaluate the feasibility and usability of three simulative models based on reaction kinetics. Model (A) predicted relative changes over reaction time for reactant, intermediate, and product. Overall, an increased reaction rate produced less intermediate and more product, thereby leading to a shorter total reaction time. Particle diminishing model (B) predicted reduction of the total waste mass. The smaller particles diminished faster along with the dominant effect of microbial reaction. In Model (C), long-chain cellulose was predicted to transform into reducing sugar. At a standard condition, 48% of cellulose molecules having 105 repeating units turned into reducing sugar after 100 h. Also it was found that the optimal enzyme concentration where the highest amount of remnant sugar was harvested was 1 mg L-1.

Preparation of Silver-doped Hydroxyapatite Using Sol-gel Method (졸-겔법을 이용한 은 담지 하이드록시아파타이트의 제조)

  • Mun Byung-Bae;Kim Ho-Kun
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.428-432
    • /
    • 2005
  • In the present study, silver-doped antibacterial hydroxyapatites were successfully prepared by the sol-gel method. For the starting solution, the molar ratio of $Ca(NO_3)_2{\cdot}4H_2O, P(OC_2H_5)_3,\;C_2H_5OH,\;and\;H_O$ was set to 0.075:0.045:20:0.135; $AgNO_3$ was added to a ratio of Ag to total cation concentration of $0.5-12 mol\%$. The prepared sol was dried at $100^{\circ}C$ for 48h and heat-treated at $1000^{\circ}C$ for 2h to obtain particles in the 200-500nm size range. The product from the synthesis of silver-doped hydroxyapatite was investigated through X-ray diffraction experiments and scanning electron microscopy. The product showed high antibacterial properties, with a disinfection ratio of Staphylococcus aureus (ATCC 6538) and Escherichia coli (ATCC 25922) over $99.9^{\circ}C$ as calculated from an antimicrobial effects evaluation by the shake flask method.

Treatment Efficiency of a Surface - Flow Wetland System Constructed on Floodplain (고수부지활용 수질정화 자유수면 인공습지의 초기처리수준)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.277-283
    • /
    • 2001
  • This paper presents treatment efficiency and plant growth of a surface-flow constructed wetland system (30 meter in length and 10 meter in width) over one year after its establishment on a floodplain of a stream. Cattails (Typha angustiflora) grown on pots were transplanted on one half of its area from inlets and reeds (Phragmites australis) on another half from an outlet. Effluent discharged from a secondary-level treatment plant was funneled into the system. The stems of cattails and reeds emerging in April 2001 grew up to 165.9 cm and 95.3 cm, respectively until July 2001. The number of stems of cattails arid reeds in July 2001 increased by 65% and 100%, respectively, compared with that just after their planting. The growth of cattails was better than that of reeds during study period. The removal rates for SS, $BOD_5$, T-N and T-P was 33%, 43%, 31%, and 51%, respectively. The system was inundated seven times by storms over the monitoring period, which disturbed its environment and led to its lower treatment rates. The increase of SS concentration in effluent after inundation of the system was attributed to the falls of soil particles onto its water surface, which had been attached to the emergent plants by floods. Purification rates for T-N were relatively low for the period of late fall through winter until early spring due to lower water temperature which may have retarded microbial nitrification and denitrification mechanisms. Reduction in T-P concentration during fall and winter was relatively higher than that during summer and spring, which may have resulted from no system perturbations by floods and heavy storms during fall and winter.

  • PDF