• Title/Summary/Keyword: concentration distributions

Search Result 684, Processing Time 0.022 seconds

Environmental Distribution of Air Pollutants and Environmental Risk Assessment in Regional Scale

  • Matsumoto, Fumio;Saito, Mitsugu;Otsuka, Naohiro
    • International Journal of Safety
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • We measured the concentrations of air pollutants at several residential sites, roadside sites and industrial sites in Iwate Prefecture, Japan. And the concentration distributions of air pollutants were estimated by atmospheric dispersion model using air emissions data. Based on those results, we calculated environmental risk of air pollutants emitted in Iwate Prefecture. As a result, it was found that the surround of factories with high emissions and highly toxic chemicals and the roadsides were high risk area, benzo(a)pyrene, formaldehyde and ozone exceeded the $10^{-5}$ risk level. Moreover, we tried to use "Loss of life expectancy: LLE" for an index to explain those risk to general public intelligibly. The total LLE of the carcinogenic chemicals was about 8.6 hours. Moreover, LLE of ozone was about 9.2 hours. Ozone has a big influence compared with the carcinogenic chemicals.

VENTILATION DESIGN OF UNDERGROUND PARKING AREA IN A NEW BUILDING USING CFD (CFD를 이용한 신축건물 내 지하주차장의 환기설계)

  • Kim, J.H.;Yang, S.Y.;Lee, G.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.59-63
    • /
    • 2007
  • With the recent increasing demand on the high-performance buildings, there has been a rapid growth in the application of the Computational Fluid Dynamics to the Building design. The conceptual ventilation design of the underground parking area currently under construction is validated using the CFD-ACE+. It has been found that the conceptual ventilation design quantitively satisfies the legal standards. However, the highly concentrated region of CO is predicted. The positions and blowing directions of ventilating lane are changed based on the previously predicted concentration distributions. The highly concentrated region of CO is slightly reduced, but not much change has been observed. Two more fang are installed and the positions and blowing directions of the fans are modified so that the highly concentrated region of CO is minimized.

  • PDF

Filmwise Condensation of Freon Vapor Including Air on a Horizontal Tube (공기를 함유한 프레온 증기의 수평관 외부에서의 막응축)

  • Kim, K.H.;Ko, H.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.20-29
    • /
    • 1995
  • A theoretical model for film condensation of a vapor including a relatively lighter noncondensable gas on a horizontal tube has been formulated on the basis of the conservation laws and other fundamental physical principles. The model is applied to the prediction of the condensation heat transfer characteristics for the Freon vapor in the presence of air on a horizontal tube. Calculated results for the mean heat transfer coefficient, which is shown to depend strongly on the bulk concentration of air, are in good agreement with the available experimental results for a range of operating conditions. The distributions of physical quantities along the surface of tube are also calculated, such as the boundary layer thickness and local heat transfer coefficient. The present model is readily reduced to the Nusselt model as the bulk concentration of air decreases to zero. Therefore, the transition from the condensation of pure vapor to that of vapor-air mixture occurs continuously not abruptly.

  • PDF

Characteristics of Zeta Potential Distribution in Silica Particles

  • Kim, Jin-Keun;Lawler, Desmond F.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1083-1089
    • /
    • 2005
  • Most experimental studies available in the literature on filtration are based on observed average zeta potential of particles (usually 10 measurements). However, analyses of data using the average zeta potential alone can lead to misleading and erroneous conclusions about the attachment behavior because of the variation of particle zeta potentials and the heterogeneous distribution of the collector surface charge. To study characteristics of zeta potential, zeta potential distributions (ZPDs) of silica particles under 9 different chemical conditions were investigated. Contrary to many researchers’ assumptions, most of the ZPDs of silica particles were broad. The solids concentration removal was better near the isoelectric point (IEP) as many researchers have noticed, thus proper destabilization of particles is very important to achieve better particle removal in particle separation processes. While, the mean zeta potential of silica particles at a given coagulant dose was a function of particle concentration; the amount of needed coagulant for particle destabilization was proportional to the total surface charge area of particles in the suspension.

Prediction of MCFC Performance Using Three Dimensional Heat and fluid Flow Analysis with Electrochemical Reaction (전기 화학 반응을 포함한 3차원 열유동 해석을 이용한 용융탄산염 연료전지의 성능예측)

  • Cho H. M.;Lee K. W.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.219-224
    • /
    • 2003
  • An analysis procedure for the MCFC channel flow has been developed to predict the fuel cell performance. As for the electrochemical reaction, among several chemical reaction models, one that fits the data best is adopted after a comprehensive comparative study. The Wavier-Stokes, energy, and species equations are solved to obtain the velocity, temperature and concentration fields for a specified average current density. The procedure is iterative as the local current density, or the reaction rate, is allowed to vary with the gas composition. A series of calculations are then carried out to examine the effects of gas flow rate, gas composition, gas usage rate, inlet gas temperature, and average current density on the fuel cell performance. The fuel cell characteristics, such as the temperature, current density distributions, and the concentration fields, for various operating conditions are presented and discussed.

  • PDF

Experimental Study on the Flow Characteristic of a Confined Ppray (제한된 공간내 분무의 유동특성 실험)

  • 정선재;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.1011-1018
    • /
    • 1992
  • A series of experiment has been performed on the spray characteristics in a cylindrical confined space with the injection pressure taken as a parameter. By using a single-hole patternator and the Malvern particle sizer, the spray mass flux, drop size and volume concentration distributions along the radial and axial directions were obtained ; the line-of- sight data by Malvern particle sizer have been converted to the ring-of-sight data by using the tomographical transformation techniqe. The experimental results show that, due to the restriction on the ambient gas entrainment by the wall boundary, the effective spray angle is increasing. The spray drops were measured to be smaller in the confined space because of a large number of floating small drops by recirculation of the gas phase and the breakup of large drops by the wall collision. Also the details on the flow behavior of the confined spray are discussed.

Combustion Characteristics of the Miao-Gravity Condition (미소중력장에서의 연소특성 연구)

  • Lee, Keun-Oh;Lee, Kyeong-Ook
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.66-70
    • /
    • 2002
  • The transient soot distributions within the region bounded by the droplet surface and the flame were measured using a full-filed light extinction technique and subsequent tomographic inversion using Abel transforms. The soot volume fraction results for n-heptane droplets represent the first quantitative assessment of the degree of sooting for isolated droplets burning under microgravity condition. The absence of buoyancy(which produces longer residence times) and the effects of thermophoresis produce a situation in which a significant concentration of soot is produced and accumulated into a soot-cloud. Results indicate that indeed the soot concentration within the microgravity droplet flames(with maximum soot volume fractions as high as ~60ppm) are significantly higher than corresponding values that are reports for normal-gravity flames. This increase in likely due to longer residence times and thermophoretic effects that manifested under microgravity conditions.

Emission studies of a dual swirl burner in the region of lean equivalence ratios (희박한 당량비 구간에서 이중 선회버너의 배출특성 연구)

  • Park, Taejoon;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.111-112
    • /
    • 2013
  • An experimental study of a dual swirl burner was conducted to analyze NOx emission in the lean conditions. The dual swirl burner is composed of a combination of swirling jet premixed(main section) and diffusion flames(pilot section). It was operated with a co-swirling configuration and overall equivalence ratios between 0.6 and 0.8. The purpose of this study is to analyze experimentally the characterization of flame temperature and NOx concentration in reacting zone and to supply the useful experimental data for numerical simulations. The measurements of temperature and NOx concentration were captured using a thin digitally-compensated thermocouple and a sampling quartz probe with quenching effect of sudden expansion, and were measured by the NOx analyzer of chemiluminescence method. We could analyse the NOx emission characteristics comparing the temperature distributions in the lean equivalence ratios.

  • PDF

Coupled Heat and Mass Transfer in Absorption of Water Vapor into LiBr-$H_2O$ Solution Flowing on Finned Inclined Surfaces

  • Seo, Taebeom;Cho, Eunjun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1140-1149
    • /
    • 2004
  • The absorption characteristics of water vapor into a LiBr-H$_2$O solution flowing down on finned inclined surfaces are numerically investigated in order to study the absorbing performances of different surface shapes of finned tubes as an absorber element. A three-dimensional numerical model is developed. The momentum, energy, and diffusion equations are solved simultaneously using a finite difference method. In order to obtain the temperature and concentration distributions, the Runge-Kutta and the Successive over relaxation methods are used. The flat, circular, elliptic, and parabolic shapes of the tube surfaces are considered in order to find the optimal surface shapes for absorption. In addition, the effects of the fin intervals and Reynolds numbers are studied. The results show that the absorption mainly happens near the fin tip due to the temperature and concentration gradient, and the absorbing performance of the parabolic surface is better than those of the other surfaces.

Effect of applied magnetic fields on Czochralski single crystal growth (Part II) (Czochralski 단결성 성장특성제어를 위한 자장형태에 관한 연구 (Part 2))

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.46-56
    • /
    • 1994
  • The characteristics of flows, temperatures, concentrations of the boron are numerically studied when uniform axial magnetic fields are applied in the Czechralski crucible. The to governing factors to the flow regimes are buoyancy, thermocapillarity, centrifugal forces, magnetic forces, diffusion coefficient and segregation coefficient of the boron. Since the concentration of the boron is so low that buoyancy effects are negligible, it cannot affect the flow and temperature fields. From the fact that the flow fields are rotationally symmetric, two velocity components in the meridional plane and the circumferential velocity are calculated together with the temperature in the steady state. Based on the known velocity and temperature distributions the unsteady concentration distributions of the boron are calculated. As the strength of the magnetic is increased, the flow velocities are decreased. Circumferential velocities are large near the crucible side-wall and in the region below the rotating crystal. Steep temperatures gradient near the edge of the rotating crystal causes the Marangoni convection. It has been found out that the convection characteristics affects the unsteady transport phenomena of the boron.

  • PDF