• Title/Summary/Keyword: concentrated acid

Search Result 489, Processing Time 0.025 seconds

The Browning Reaction and Inhibition of Apple Concentrated Juice (사과농축액의 갈변현상 및 그 억제)

  • 배수경;이영철;김현위
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.1
    • /
    • pp.6-13
    • /
    • 2001
  • The study was conducted to investigate the effect of the browning inhibitors such as PVPP(polyvinylpoly-pyrrolidone), A.A.(ascorbic acid) on nonezymatic browning factors [free sugar, total amino acid, organic acid, A.A., HMF (hydroxymethylfurfural)] and enzymatic browning factors [PRO (polyphenoloxidase) activity, polyphenol compounds] in concentrated apple juice during 90 days storage. Considering color value (L value, $\Delta$E), absorbance at 420 nm, concentrated apple juice during 90 days storage. Considering color the effect of browning inhibition. According to the storage period, the changes of nonenzymatic factors in concentrated apple juice added with browning inhibitors were similar to those in control (concentrated apple juice without browning inhibitors), which were the decreased of sucrose(0.24~0.35% at 90 days), the slight increase of glucose and fructose, the decrease of total amino acid (530.4~573.1 mg/10g at 90 days), same value of A.A. at 90 days (38.5~78.6 mg/100g), and the increase of HMF (27.8~30.6 mg/100g at 90 days). On the contrary, enzymatic browning factors were significantly inhibited in concentrated apple juice added with PVPP, judging from the slow increase of PRO activity and the significant decrease of initial value in polyphenol compounds (especially chlorogenic acid). These results suggest that PVPP plays an important role as enzymatic browning inhibitor, that is, a scavenger of polyphenol compounds by adsorption in concentrated apple juice.

  • PDF

Analysis of secondary reactions in concentrated sulfuric acid hydrolysis of hollocellulose by 1H-NMR spectroscopy (1H-NMR 분광분석을 통한 진한 산 가수분해 반응 2차 반응 조건 분석)

  • Lee, Jai-Sung;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.37-43
    • /
    • 2014
  • Kinetics of holocellulose hydrolysis in concentrated sulfuric acid was analyzed using $^1H$-NMR spectroscopy with different reaction time, temperature and acid concentration in secondary hydrolysis. In this work, reaction condition of secondary hydrolysis was similar to concentrated sulfuric acid process with electrodialysis or simulated moving bed chromatography process for sulfuric acid recycling. By $^1H$-NMR spectroscopy, acid hydrolyzates from higher secondary acid hydrolysis (25-35% acid concentration) was successfully analyzed without any difficulties in neutralization or adsorption of acid hydrolyzate to solid salt. Higher acid concentration, higher temperature and longer reaction time led to more cellulose for glucose conversion but accompanied with glucose to galactose isomerization, glucose to unknown compounds and degradation of glucose to organic acid via furans.

Optimization of Concentrated Acid Hydrolysis of Waste Paper Using Response Surface Methodology

  • Jung, Ji Young;Choi, Myung Suk;Yang, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.87-99
    • /
    • 2013
  • Waste paper stands for the major biodegradable organic fraction of most of municipal solid waste. The potential of waste paper for glucose production was investigated in this current work. The pretreatment was accomplished by first subjecting waste paper to disintegration time (30 s), followed by ink removal of disintegrated waste paper using an deinking agent. Concentrated acid hydrolysis of waste paper with sulfuric acid was optimized to maximize glucose conversion. The concentrated acid hydrolysis conditions for waste paper (disintegrated time: 30 s, deinking agent loading : 15 ml) were optimized by using central composite design and response surface methodology. The optimization process employed a central composite design, where the investigated variables were acid concentration (60~80%), loading sulfuric acid (1~5 ml) and reaction time (1~5 h). All the tested variables were identified to have significant effects (p < 0.05) on glucose conversion. The optimum concentrated acid hydrolysis conditions were acid concentration of 70.8%, loading sulfuric acid of 3.2 ml and a reaction time of 3.6 h. This research of concentrated acid hydrolysis was a promising method to improve glucose conversion for waste paper.

The Constraint for Oxidation of Ascorbic Acid (Ascorbic Acid의 산화억제)

  • 이강연;한창규;조춘구
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.3
    • /
    • pp.67-86
    • /
    • 1999
  • Ascorbic acid which has various physiological benefits as the functional substance is easily oxidized and destroyed by the structural instability. Liposome encapsulated pure ascorbic acid was prepared for the sake of the constraint of oxidation. The influence of cholestrol or $\beta$-sitosterol on the stabilization of liposome was investigated. Butylated hydroxytoluene(BHT), tertiary butylhydroquinone(TBHQ), $\alpha$ -glycosyl rutin and natural concentrated tocopherol were used for constraint of oxidation of ascorbic acid. The presence of cholesterol or $\beta$-sitosterol decreased oxidation of ascorbic acid. That results were thought that cholesterol or $\beta$-sitosterol so increased rigidity of bilayer that the leakage of vitamin C decreased. As a result the oxidation and degradation of vitamin C were constrained. At 0.3w/w% cholesterol content the most stable liposome was formulated. The whole antioxidant that used at the research constrained oxidation of ascorbic acid. The antioxidation for ascorbic acid increased in order of tertiary butylhydroquinone, $\alpha$-glycosyl rutin, butylated hydroxytoluene and natural concentrated tocopherol. But u -glycosyl rutin is preferable to tertiary butylhydroquinone which was the most effective in antioxidation as the antioxidant of ascorbic acid which was utilized in cosmetics and pharmacy.

  • PDF

Characteristics of xylose and glucuronic acid at concentrated sulfuric acid hydrolysis (진한 황산 가수분해 반응조건에서 xylose와 glucuronic acid의 반응 특성)

  • Cho, Dae-Haeng;Kim, Yong-Hwan;Park, Jong-Moon;Sim, Jae-Hoon;Kim, Byung-Ro;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.9-14
    • /
    • 2012
  • Formed fermentation inhibitors during acid saccharification leads to poor alcohol production based on lignocellulosic bio-alcohol production process. In this work, it is focused on the formation of fermentation inhibitors from xylan, which is influenced by reaction tempearature and time of acidic sacharifiaction of xylose and glucuronic acid. In second step of concentrated acid hydrolysis, part of xylose and glucuronic acid was converted to furfuraldehyde and formic acid by dehydration and rearrangement reactions. Furfural was form from xylose, which was highly sensitive to reaction temperature. Formic acid was come from both xylose and glucuronic acid, which supposed to main inhibitor in biobutanol fermentation. Reaction temperature of second hydrolysis was main variables to control the furfural and formic acid generation. Careful control of acid saccharification can reduce generation of harmful inhibitors, especially second step of concentrated sulfuric acid hydrolysis process.

Comparison of Physicochemical and Sensory Properties of Freeze-concentrated Milk with Evaporated Milk during Storage

  • Hwang, J.H.;Lee, S.J.;Park, H.S.;Min, S.G.;Kwak, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.273-282
    • /
    • 2007
  • This study was carried out to compare the changes of nutrients, sensory and chemical properties of freeze-concentrated and evaporated milks during storage. For pasteurization, the freeze-concentrated milk containing 27% of total solid was treated with 150 rpm ozone for 5 min, and 99% of microflora was eliminated. Also, the activities of protease and lipase decreased 93.31% and 96.15%, respectively, and phosphatase showed negative activity. Total bacteria count was maintained below$2.0{\times}10^4$CFU/ml. During storage, TBA absorbance was lower in freeze-concentrated milk than that in the evaporated milk. The production of short-chain free fatty acids and free amino acids increased proportionally to the storage period in both samples. While the short-chain free fatty acid production was lower in the freeze-concentrated milk compared with that in the evaporated milk, the production of individual free amino acid was similar in both samples. In sensory evaluation, cooked flavor and color were much lower in the freeze-concentrated milk than that in the evaporated milk. Overall acceptability score was higher in the freeze-concentrated than the evaporated milk. Based on above results, ozone treatment for the freeze-concentrated milk pasteurization was positive at the elimination of microflora and enzyme inactivation. During storage, the freeze-concentrated sample minimized the change of color and TBA absorbance, the production of short-chain free fatty acid and vitamins than the evaporated milk. Therefore, the freeze-concentrated milk process in the present study resulted in the positive effect in minimizing nutrient loss and keeping quality of milk during storage.

Kinetic Study of Xylan Hydrolysis and Decomposition in Concentrated Sulfuric Acid Hydrolysis Process by $^1H$-NMR Spectroscopy ($^1H$-NMR에 의한 Xylan의 황산가수분해 과정에서 나타나는 반응 동력학 연구)

  • Cho, Dae-Haeng;Kim, Yong-Hwan;Kim, Byung-Ro;Park, Jong-Moon;Sung, Yong-Joo;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • Proton-NMR spectroscopic method was applied to kinetic study of concentrated sulfuric acid hydrolysis reaction, especially focused on 2nd step of acid hydrolysis with deferent reaction time and temperature as main variables. Commercial xylan extracted from beech wood was used as model compound. In concentrated acid hydrolysis, xylan was converted to xylose, which is unstable in 2nd hydrolysis condition, which decomposed to furfural or other reaction products. Without neutralization steps, proton-NMR spectroscopic analysis method was valid for analysis of not only monosaccharide (xylose) but also other reaction products (furfural and formic acid) in acid hydrolyzates from concentrated acid hydrolysis of xylan, which was the main advantages of this analytical method. Higher temperature and longer reaction time at 2nd step acid hydrolysis led to less xylose concentration in xylan acid hydrolyzate, especially at $120^{\circ}C$ and 120 min, which meant hydrolyzed xylose was converted to furfural or other reaction products. Loss of xylose was not match with furfural formation, which meant part of furfural was degraded to other undetected compounds. Formation of formic acid was unexpected from acidic dehydration of pentose, which might come from the glucuronic acid at the side chain of xylan.

Comparison of the Physicochemical Properties of Freeze-Concentrated versus Evaporated Milk

  • Lee, Su-Jung;Hwang, Ji-Hyun;Kim, Song-Hee;Min, Sang-Gi;Kwak, Hae-Soo
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.844-850
    • /
    • 2006
  • This study was designed to compare various quality characteristics, such as nutrient composition and physicochemical and sensory properties of freeze-concentrated milk made by a newly developed continuous multi-stage process with those of evaporated milk. The freeze concentration process reduced the water content up to 73%. Most of the physicochemical properties of evaporated milk were different from raw milk; however the freeze-concentrated milk showed little difference from the raw milk. The thiobarbituric acid value and free fatty acid concentrations were significantly greater in the evaporated milk than in the freeze-concentrated milk. Several effects on sensory characteristics, such as off-taste, were significantly stronger in the evaporated milk. Overall, this study indicates that the newly developed freeze concentration technique results in improved physicochemical and sensory properties, and has little effect on most nutrient levels when compared with the evaporation process. Further research is necessary to further elucidate the chemical and sensory properties of freeze-concentrated milk.

Changes in Lipid Components of Oleoresin Red Pepper during Cooking (고추 Oleoresin 의 가열조리중 지질성분의 변화)

  • 최옥수;하봉석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.238-243
    • /
    • 1994
  • Changes of lipid components in modified oleoresin during cooking at high temperature were investigated. In preparation of the modified oleoresin, dried red pepper was milled to 100 mesh of size particle and extracted oily compounds by reduced pressure steam distillation . The rest part was reextracted and concentrated and concentrated. The extracts were combined. The same volume of water and 4% of polyglycerol condensed ricinoleate (PGDR) were added to the combined extract, and emulsified to make oleresin red pepper. Non-polar lipid components were quantified 3 times higher in the oleoresin than polar lipid components . The components of non-polar lipd was mainly triglyceride comprising 75.8%. The level of phosphatidyl choline and phosphatidyl ethanolamine were 38.6and 26.1%, respectively. linoleic acid was distinctively abundant (63.1%) and followed by palmitic acid, oleic acid, linolenic acid and stearic acid in the oleoresin. Oxidation of lipid at high temperature was principally affected by temperature rather than oxygen existence . With the result of oxidation , palmitic acid and myristic acid increased, however, oleic acid, linoleic acid, and linolenic acid decreased.

  • PDF

Quality Deterioration Suppressing Effects of pH Regulators during Heat Treatment of Concentrated Blueberry Puree (농축 블루베리 퓌레 열처리 시 pH 조절제의 품질 저하 억제 효과)

  • Lee, In Gyeong;Min, Seo Cheol;Kim, Hee Sun;Han, Gwi Jung;Kim, Myung Hwan
    • Korean journal of food and cookery science
    • /
    • v.32 no.5
    • /
    • pp.549-558
    • /
    • 2016
  • Purpose: In this study, we aimed to minimize quality degradation of concentrated blueberry puree by thermal treatment at $90^{\circ}C$ for 5 min, with citric acid (CA) and acidic sodium metaphosphate (ASM) as pH modifiers. Methods: The color values, redness a, anthocyanin contents, DPPH radical scavenging, elastase inhibition and tyrosinase inhibition activities were evaluated for quality parameters of concentrated blueberry puree. Results: The highest values of color value, redness a, anthocyanin contents, DPPH radical scavenging, elastase inhibition and tyrosinase inhibition activities were 1% CA+0.5% ASM followed by 1% CA and control. The quality parameters of concentrated blueberry puree were significantly different between control and 1% CA+0.5% ASM treatment (p<0.05). Conclusion: During thermal treatment, quality degradation of concentrated blueberry puree was reduced by 1% CA+0.5% ASM treatment, which is expected for new acidulants.