• 제목/요약/키워드: concave structure

검색결과 98건 처리시간 0.025초

부분 무기둥 비계구조 골조 거동에 관한 실험적 연구 (An Experimental Study on the Behavior of Scaffolding System without a Part of Column)

  • 손기상;정희종
    • 한국안전학회지
    • /
    • 제28권4호
    • /
    • pp.66-71
    • /
    • 2013
  • There is a critically structural problem of scaffolding system when one of scaffold columns is remove to be used as a gangway for their temporary office in the structure before finishing all such as an apartment or office building. This is not used to checking to structurally checking at a construction site. This study is to find out which system at a site will be more effective and low-cost-high effectiveness of aluminum ladder, timber ladder, ${\phi}$1/2 inch steel pipe truss with a type of concave, convex warren truss ladders. Theses are structurally tested with horizontal set as a truss type with 1.8 meter long. Concentrated load has been loaded at the upper center of the system and checked its strain at the bottom center, using aluminum-use strain gage and steel-use gauge have been attached concave warren truss with diameter 1/2 inch has 14% stronger than convex truss. Convex truss has almost same strength as an aluminum ladder truss, it is found out.

MF 기반 다중 사용자 Massive MIMO 시스템의 최적 기지국 안테나 수 및 사용자 수 분석 (Optimal Number of Base Station Antennas and Users in MF Based Multiuser Massive MIMO Systems)

  • 정민채;최수용
    • 한국통신학회논문지
    • /
    • 제38A권8호
    • /
    • pp.724-732
    • /
    • 2013
  • 본 논문은 다중 사용자 (multiuser) 다중 안테나 (MIMO, multiple-input and multiple-output) 시스템을 기반으로 거대 안테나 시스템 (massive MIMO system)에 대한 성능 분석을 진행한다. 하향 링크 프레임 구조를 고려한 평균 셀 용량을 도출하고, 해당 평균 셀 용량을 기지국 안테나 수 및 사용자 수에 대하여 분석한다. 평균 셀 용량은 기지국 안테나 수 및 사용자 수에 대해 오목 함수 (concave function)이며 이러한 특징을 통해 최적의 기지국 안테나 수 및 사용자 수를 도출한다. 실험 결과를 통해 수식적으로 도출한 최적 안테나 수 및 사용자 수는 실험을 통한 최적 값과 일치함을 확인하였으며 도출한 최적 값을 통해 최대 값의 평균 셀 용량을 얻을 수 있음을 확인할 수 있다.

증강현실 기반의 최소침습수술용 인터페이스의 개발 (Development of Immersive Augmented Reality interface for Minimally Invasive Surgery)

  • 문진기;박신석;김유진;김진욱
    • 로봇학회논문지
    • /
    • 제3권1호
    • /
    • pp.58-67
    • /
    • 2008
  • This study developed a novel augmented reality interface for minimally invasive surgery. The augmented reality technique can alleviate the sensory feedback problem inherent to laparoscopic surgery. An augmented reality system merges real laparoscope image and reconstructed 3D patient model based on diagnostic medical image such as CT, MRI data. By using reconstructed 3D patient model, AR interface could express structure of patient body that is invisible outside visual field of laparoscope. Therefore, an augmented reality system improved sight information of limited laparoscope. In our augmented reality system, the laparoscopic view is located at the center of a wide-angle concave screen and reconstructed 3D patient model is displayed outside the laparoscope. By using a joystick, the laparoscopic view and the reconstructed 3D patient model view are changed concurrently. With our augmented reality system, the surgeon can see the peritoneal cavity from a wide angle of view, without having to move the laparoscope. Since the concave screen serves immersive environments, the surgeon can feel as if she is in the patient body. For these reasons, a surgeon can recognize easily depth information about inner parts of patient and position information of surgical instruments without laparoscope motion. It is possible for surgeon to manipulate surgical instruments more exact and fast. Therefore immersive augmented reality interface for minimally invasive surgery will reduce bodily, environmental load of a surgeon and increase efficiency of MIS.

  • PDF

Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.270-274
    • /
    • 2012
  • The nucleophilic substitution reactions of 1,2-phenylene phosphorochloridate (1c) with X-pyridines are investigated kinetically in acetonitrile at $-25.0^{\circ}C$. The free energy correlations for substituent X variations in the nucleophiles exhibit biphasic concave upwards with a break point at X = 3-Ph. The pyridinolysis rate of 1c with a cyclic five-membered ring is $2.70{\times}10^5$ times faster than its acyclic counterpart (1a: phenyl ethyl chlorophosphate) because of great positive value of the entropy of activation of 1c (${\Delta}S^{\neq}$ = +26 eu) compared to negative value of 1a (${\Delta}S^{\neq}$= -24 eu) over considerably unfavorable enthalpy of activation of 1c (${\Delta}H^{\neq}=20.5kcal\;mol^{-1}$) compared to 1a (${\Delta}H^{\neq}=12.7kcal\;mol^{-1}$). Great enthalpy and positive entropy of activation are ascribed to sterically congested transition state (TS) and solvent structure breaking in the TS. A concerted mechanism involving a change of nucleophilic attacking direction from a frontside attack with the strongly basic pyridines to a backside attack with the weakly basic pyridines is proposed on the basis of greater selectivity parameters (${\rho}_X$ = -1.99 and ${\beta}_X$ = 0.41) with the strongly basic pyridines compared to those (${\rho}_X$ = -0.42 and ${\beta}_X$ = 0.07) with the weakly basic pyridines.

심벌 트랜스듀서의 종류별 음향 특성 비교 분석 (Comparative analysis of the acoustic characteristics of different types of cymbal transducers)

  • 최유지;심하영;노용래
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.256-265
    • /
    • 2019
  • 수중 탐지용으로 사용되는 심벌 트랜스듀서에는 여러 가지 종류가 연구되어져 왔는데, 대표적인 종류로 Moonie 트랜스듀서, 컨벡스 심벌 트랜스듀서, 그리고 컨케이브 심벌 트랜스듀서 등이 있다. 본 연구에서는 수중 광대역 프로젝터용으로 이들 세 종류의 트랜스듀서의 특성을 분석하고 비교하였다. 트랜스듀서의 구조 변수들이 각 트랜스듀서의 음향 특성에 미치는 영향을 분석하고 이를 바탕으로 각 트랜스듀서 종류가 특정 중심주파수를 가지면서 대역폭이 최대가 되는 구조를 도출하였다. 최적화된 구조를 가지는 트랜스듀서들의 성능을 비교한 결과, 컨벡스 심벌 트랜스듀서가 광대역과 고출력, 두 측면에서 모두 가장 우수하다는 것을 확인하였다.

A Robust Control with a Neural Network Structure for Uncertain Robot Manipulator

  • Han, Myoung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1916-1922
    • /
    • 2004
  • A robust position control with the bound function of neural network structure is proposed for uncertain robot manipulators. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, and etc. Therefore, uncertainties are often nonlinear and time-varying. The neural network structure presents the bound function and does not need the concave property of the bound function. The robust approach is to solve this problem as uncertainties are included in a model and the controller can achieve the desired properties in spite of the imperfect modeling. Simulation is performed to validate this law for four-axis SCARA type robot manipulator.

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Analysis of plane frame structure using base force element method

  • Peng, Yijiang;Bai, Yaqiong;Guo, Qing
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.11-20
    • /
    • 2017
  • The base force element method (BFEM) is a new finite element method. In this paper, a degenerated 4-mid-node plane element from concave polygonal element of BFEM was proposed. The performance of this quadrilateral element with 4 mid-edge nodes in the BFEM on complementary energy principle is studied. Four examples of linear elastic analysis for plane frame structure are presented. The influence of aspect ratio of the element is analyzed. The feasibility of the 4 mid-edge node element model of BFEM on complementary energy principles researched for plane frame problems. The results using the BFEM are compared with corresponding analytical solutions and those obtained from the standard displacement finite element method. It is revealed that the BFEM has better performance compared to the displacement model in the case of large aspect ratio.

맞대기 용접시의 각변형 거동에 관한 연구 (Behavior of angular distortion in butt joint welding of thin plate structure)

  • 배강열;김희진
    • Journal of Welding and Joining
    • /
    • 제6권3호
    • /
    • pp.21-26
    • /
    • 1988
  • The behavior of angular distortion in butt joint wleding of thin plate structure is investigated with an experimental model and partially with a computational model. The experimental model studying the effects of specimene size and degree of restraint on the angular distorion offers a good method for analyzing the behavior of the distrotion. In addition, the distrotion during welding was demonstrated by both experimental measurement and numericla prediciton. The facts evealed in this study are as follows : 1) distrotion angles were changed with variations of specimene wldth. 2) With the restraint, angular distrotion was reduced to 20% to that of free joint. 3) After the restraint being removed, the effect of restraint was also remained. 4) Same heat input per unit thickness caused same amount of distortion. 5) The mode of angular distortion was expected to be changed with expected to be changed with time, i.e. convex movement during heating and concave one during cooling.

  • PDF