DOI QR코드

DOI QR Code

Comparative analysis of the acoustic characteristics of different types of cymbal transducers

심벌 트랜스듀서의 종류별 음향 특성 비교 분석

  • Received : 2018.11.21
  • Accepted : 2019.05.20
  • Published : 2019.05.31

Abstract

Several types of cymbal transducers used for underwater detection have been studied. Representative types are Moonie, convex cymbal, and concave cymbal transducers. In this study, we analyzed the characteristics of these three types of transducers for underwater broadband projectors and compared them together. First, the influence of structural variables on the acoustic characteristics of the transducers was analyzed. Based on this, we derived the structure of each transducer type to have a specific center frequency and the maximum bandwidth. As a result of comparing the performance of the optimized transducers, the convex cymbal transducer turned out to be best in terms of both broad bandwidth and high power.

수중 탐지용으로 사용되는 심벌 트랜스듀서에는 여러 가지 종류가 연구되어져 왔는데, 대표적인 종류로 Moonie 트랜스듀서, 컨벡스 심벌 트랜스듀서, 그리고 컨케이브 심벌 트랜스듀서 등이 있다. 본 연구에서는 수중 광대역 프로젝터용으로 이들 세 종류의 트랜스듀서의 특성을 분석하고 비교하였다. 트랜스듀서의 구조 변수들이 각 트랜스듀서의 음향 특성에 미치는 영향을 분석하고 이를 바탕으로 각 트랜스듀서 종류가 특정 중심주파수를 가지면서 대역폭이 최대가 되는 구조를 도출하였다. 최적화된 구조를 가지는 트랜스듀서들의 성능을 비교한 결과, 컨벡스 심벌 트랜스듀서가 광대역과 고출력, 두 측면에서 모두 가장 우수하다는 것을 확인하였다.

Keywords

GOHHBH_2019_v38n3_256_f0001.png 이미지

Fig. 1. Schematic structure of the Moonie transducer.

GOHHBH_2019_v38n3_256_f0002.png 이미지

Fig. 2. Schematic structure of the convex cymbal tran-sducer.

GOHHBH_2019_v38n3_256_f0003.png 이미지

Fig. 3. Schematic structure of the concave cymbal transducer.

GOHHBH_2019_v38n3_256_f0004.png 이미지

Fig. 4. TVR spectra of the three types of cymbal transducers.

GOHHBH_2019_v38n3_256_f0005.png 이미지

Fig. 5. Analysis of the effect of the structural variables on the center frequency of the cymbal transducers : (a) base diameter (db), (b) apex diameter (da), (c) total diameter (dt), (d) cavity height (hc), (e) cap thickness (tm), (f) PZT thickness (tc).

GOHHBH_2019_v38n3_256_f0006.png 이미지

Fig. 6. Analysis of the effect of the structural variables on the peak TVR of the cymbal transducers : (a) base diameter (db), (b) apex diameter (da), (c) total diameter (dt), (d) cavity height (hc), (e) cap thickness (tm) (f) PZT thickness (tc).

GOHHBH_2019_v38n3_256_f0007.png 이미지

Fig. 7. Analysis of the effect of the structural variables on the bandwidth of the cymbal transducers : (a) base diameter (db), (b) apex diameter (da), (c) total diameter (dt), (d) cavity height (hc), (e) cap thickness (tm) (f) PZT thickness (tc).

GOHHBH_2019_v38n3_256_f0008.png 이미지

Fig. 8. TVR spectra of the three optimized cymbal transducers.

Table 1. Basic dimensions of the three cymbal transducers.

GOHHBH_2019_v38n3_256_t0001.png 이미지

Table 2. Acoustic characteristics of the three basic cymbal transducers.

GOHHBH_2019_v38n3_256_t0002.png 이미지

Table 3. Variation range of the design variables.

GOHHBH_2019_v38n3_256_t0003.png 이미지

Table 4. Optimized dimensions of the three cymbal transducers.

GOHHBH_2019_v38n3_256_t0004.png 이미지

Table 5. Acoustic characteristics of the three optimized cymbal transducers.

GOHHBH_2019_v38n3_256_t0005.png 이미지

References

  1. K. D. Rolt, "History of the flextensional electroacoustic transducers," J. Acoust. Soc. Am. 87, 1340-1349 (1990). https://doi.org/10.1121/1.399507
  2. W. J. Hughes, Transducers, Underwater Acoustic (Digital Encyclopedia of Applied Physics, Germany, 2003), pp. 76-77.
  3. A. Dogan, K. Uchino, and R. E. Newnham, "Composite piezoelectric transducer with truncated conical endcaps cymbal," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44, 597-605 (1997). https://doi.org/10.1109/58.658312
  4. J. Zhang, W. J. Hughes, A. C. Hladky-Hennion, and R. E. Newnham, "Concave cymbal transducers," Mat. Res. Innovat. 2, 252-255 (1999). https://doi.org/10.1007/s100190050094
  5. J. F. Tressler and R. E. Newnham, "Doubly resonant cymbal-type transducers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 44, 1175-1177 (1997). https://doi.org/10.1109/58.655644
  6. Q. C. Xu, S. Yoshikawa, J. R. Belsick, and R. E. Newnham, "Piezoelectric composites with high sensitivity and high capacitance for use at high pressures," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38, 634-639 (1991). https://doi.org/10.1109/58.108862
  7. J. Zhang, W. J. Hughes, P. Bouchilloux, Jr., R. J. Meyer, K. Uchino, and R. E. Newnham, "A class V flextensional transducer: the cymbal," Ultrasonics, 37, 387-393 (1999). https://doi.org/10.1016/S0041-624X(99)00021-9
  8. R. E. Newnham, A. Dogan, Q. C. Xu, K. Onitsuka, J. F. Tressler, and S. Yoshikawa, "Flextensional Moonie actuators," Proc. IEEE Ultrason. Symp. 509-513 (1993).
  9. J. F. Tressler, W. Cao, K. Uchino, and R. E. Newnham, "Ceramic-metal composite transducers for underwater acoustic applications," Proc. 10th IEEE Int. Symp. Appl. Ferroelectr. 561-564 (1996).
  10. P. Ochoa, J. L. Pons, M. Villegas, and J. F. Fernandez, "Advantages and limitations of cymbals for sensor and actuator applications," Sens. Actuators A: Phys. 132, 63-69 (2006). https://doi.org/10.1016/j.sna.2006.05.031
  11. F. Bejarano, A. Feeney, and M. Lucas, "A cymbal transducer for power ultrasonics applications," Sens. Actuators A: Phys. 210, 182-189 (2014). https://doi.org/10.1016/j.sna.2014.02.024
  12. W. Sheng, Z. Tiemin, Z. Jiantao, and Y. Xiuli, "Optimal design of cymbal stack transducer in a piezoelectric linear actuator by finite element method," Enrg. Harv. Sys. 2, 169-176 (2015).
  13. A. Feeney and M. Lucas, "A comparison of two configurations for a dual-resonance cymbal transducer," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 489-496 (2018). https://doi.org/10.1109/TUFFC.2018.2793310
  14. K. E. Jenne, Acoustic Cymbal Transducers-design, Hydrostatic Pressure Compensation, and Acoustic Performance, (M. S. thesis, Naval Postgraduate School, 2004).
  15. A. Dogan, S. Yoshikawa, K. Uchino, and R. E. Newnham, "The effect of geometry on the characteristics of the Moonie transducer and reliability issue," Proc. IEEE Ultrason. Symp. 935-939 (1994).
  16. R. E. Newnham, A. Dogan, D. C. Markley, J. F. Tressler, J. Zhang, E. Uzgur, R. J. Meyer, Jr., A. C. Hladky-Hennion, and W. J. Hughes. "Size effects in capped ceramic underwater sound projectors," Proc. OCEANS'02, 2315-2321 (2002).
  17. A. Dogan, E. Uzgur, D. C. Markley, R. J. Meyer, Jr., A. C. Hladky-Hennion, and R. E. Newnham "Materials for high performance cymbal transducers," J. Electroceram. 13, 403-407 (2004). https://doi.org/10.1007/s10832-004-5132-9
  18. A. Dogan and E. Uzgur, "Size and material effects on cymbal transducer for actuator applications," Ferroelectrics, 331, 53-63 (2006). https://doi.org/10.1080/00150190600734955
  19. J. L. Butler and C. H. Sherman, Transducers and Arrays for Underwater Sound (Springer, Switzerland, 2016), pp. 552.
  20. D. C. Montgomery, Design and Analysis of Experiments (John Wiley & Sons, New Jersey, 2017), pp. 405-408.
  21. S. L. Ferreira, R.E. Bruns, H. S. Ferreira, G. D. Matos, J. M. David, G. C. Brandao, E. G. da Silva, L. A. portugal, P. S. dos Reis, A. S. Souza, and W. N. L. dos Santos, "Box-Behnken design: an alternative for the optimization of analytical methods," Anal. Chim. Acta. 597, 179-186 (2007). https://doi.org/10.1016/j.aca.2007.07.011
  22. H. Kim, Y. Lim, and Y. Roh, "Study on the wideband Tonpilz transducer with a cavity-type head mass" (in Korean), J. Acoust. Soc. Kr. 33, 94-101 (2014). https://doi.org/10.7776/ASK.2014.33.2.094
  23. Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti, "Scatter search and local NLP solvers: A multistart framework for global optimization," INFORMS J. Comput. 19, 328-340 (2007). https://doi.org/10.1287/ijoc.1060.0175