• Title/Summary/Keyword: computer-generated hologram

Search Result 179, Processing Time 0.02 seconds

Rapid Calculation of CGH Using the Multiplication of Down-scaled CGH with Shifted Concave Lens Array Function

  • Lee, Chang-Joo;Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 2022
  • Holographic display technology is one of the promising 3D display technologies. However, the large amount of computation time required to generate computer-generated holograms (CGH) is a major obstacle to the commercialization of digital hologram. In various systems such as multi-depth head-up-displays with hologram contents, it is important to transmit hologram data in real time. In this paper, we propose a rapid CGH computation method by applying an arraying of a down-scaled hologram with the multiplication of a shifted concave lens function array. Compared to conventional angular spectrum method (ASM) calculation, we achieved about 39 times faster calculation speed for 3840 × 2160 pixel CGH calculation. Through the numerical investigation and experiments, we verified the degradation of reconstructed hologram image quality made by the proposed method is not so much compared to conventional ASM.

Holographic Three-dimensional Computer-Aided Imaging

  • Rosen, Joseph;Abookasis, David
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.433-436
    • /
    • 2003
  • Recent developments in a new method of holographic computer-aided imaging will be reviewed. Our hologram is computed from angular viewpoints of the observed 3D scene. The recorded data are processed to yield a 2D computer-generated hologram. When this hologram is illuminated properly, a 3D image of the scene is reconstructed.

  • PDF

Impovement of Image Reconstruction from Kinoform using Error-Diffusion Method

  • Fujita, Yuta;Tanaka, Ken-Ichi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.638-643
    • /
    • 2009
  • A computer-generated hologram(CGH) is made for three-dimensional image reconstruction of a virtual object which is a difficult to irradiate the laser light directly. One of the adverse effect factors is quantization of wave front computed by program when a computer-generated hologram is made. Amplitude element is not considered in Kinoform, it needs processing to reduce noise or false image. So several investigation was reported that the improvement of reconstructed image of Kinoform. Means to calculate the most suitable complex amplitude distribution are iterative algorithm, simulated annealing algorithm and genetic Algorithm. Error diffusion method reconstructed to separate the object as for the noise that originated in the quantization error. So it is efficient method to obtain high quality image with not many processing.

  • PDF

Fast Computation Algorithm of Fresnel Holograms Using Recursive Addition Method (반복 가산 기법을 이용한 Fresnel 홀로그램의 고속 계산 알고리듬)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5C
    • /
    • pp.386-394
    • /
    • 2008
  • For digital holographic video system, it is important to generate digital hologram as fast as possible. This paper proposed a fixed-point method and fast generation method that can calculate the Fresnel hologram using operation of whole-coordinate recursive addition. To compute the digital hologram, 3D object is assumed to be a collection of depth-map point generated using a PC. Our algorithm can compute a phase on a hologram by recursive addition with fixed-point format at a high speed. When we operated this algorithm on a personal computer, we could maximally compute digital hologram about 70% faster than conventional method and about 30% faster than of [3]'s method.

Analysis of CGH and Watermarking Method using Global 2DDCT (전역 2차원 DCT를 이용한 디지털 홀로그램의 분석 및 워터마킹 기법)

  • Choi, Hyun-Jun;Seo, Young-Ho;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1267-1274
    • /
    • 2007
  • In this paper, we propose a digital watermarking algorithm for digital hologram generated by computer generated hologram(CGH) method. Digital hologram generated by a computer calculation(CGH) is one of the most expensive contents and its usage is being expanded. Thus, it is highly necessary to protect the ownership of digital hologram. In this paper two digital watermarking schemes are introduced hologram-domain and global 2DDCT-domain scheme. Proposed watermarking scheme showed very high imperceptibility and quite high robustness against the attacks. The purpose of this paper is to introduce these global 2DDCT based watermarking schemes. Thus, we expect that these and the contents in this paper can be very useful bases for the further digital watermarking schemes of the digital holograms.

A Study on the Angular Characteristics of Photopolymer-based Hologram Recording and Reproducing Light

  • Kwang-pyo, Hong;Jiwoon, Lee;Lee-hwan, Hwang;Soon-chul, Kwon;Seunghyun, Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.460-469
    • /
    • 2022
  • Increasing interest in the metaverse world these days, interest in realistic content such as 3D displays is growing. In particular, hologram images seen in movies provide viewers with an immersive display that cannot be seen in conventional 2D images. Since the first discovery of holography by Dennis Gabor in 1948, this technology has developed rapidly. Spatially, this beginning of technology like Optical hologram called analog hologram and Digital hologram such as computer-generated hologram (CGH). In analog and digital holograms, a recording angle and a recording wavelength are having important role when reproducing and display hologram. In the hologram, diffraction of light causes by unexpected formed by the synthesis from interference with object and reference light. When recording, the incident light information and mismatched reproduction light reconstruct the hologram in an undesirable direction. Reproduction light that is out of sync with incident light information with initial condition of recording will cause reconstructed image in an undesirable direction. Therefore, we analyze the holographic interference pattern generated by hologram recording in volume holograms using photopolymer and analyze the characteristics that vary depending on the angle of the reproduced light. This is expected to be used as a basic research on various holographic application that may cause as holograms are applied to industries in the future.

System Architecture for Digital Hologram Video Service (디지털 홀로그램의 비디오 서비스를 위한 시스템 설계)

  • Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.590-605
    • /
    • 2014
  • The purpose of this paper is to propose a service system for a digital hologram video, which has not been published yet. This system assumes the existing service framework for 2-dimensional or 3-dimensional image/video, which includes data acquisition, processing, transmission, reception, and reconstruction. This system includes acquisition of color and depth image pairs from a image acquisition system with vertical rigs, rectification of acquired image pairs and generating digital hologram. Also it is designed to reduce the CGH (computer-generated hologram) generation time to 1/3. It also includes some additional and optional functions such as watermarking, compression, and encryption.

A Frequency Characteristic Analysis of Digital Hologram in Fresnel Transform Domain (Fresnel 변환영역에서 디지털 홀로그램의 주파수 특성분석)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1505-1511
    • /
    • 2012
  • Since digital hologram includes an amount of data as can be seen at the process of digitization, it is necessary that the data representing digital hologram is reduced for storing, transmission, and processing. As the efforts that are to handle hologram with a type of digital information have been increased, various methods to compress digital hologram called by fringe pattern are groped. Suitable proposal is encoding of digital hologram. This paper analyzed the properties of digital hologram using tools of frequency transform, assuming that a generated digital hologram is a 2D image by introducing Fresnel Transform. The analysis results of digital hologram to be proposed in this paper are being expected to be used as the core techniques for an encoding of digital hologram.

Reduction of Reconstruction Errors in Kinoform CGHs by Modified Simulated Annealing Algorithm

  • Yang, Han-Jin;Cho, Jeong-Sik;Won, Yong-Hyub
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • In this paper, a conventional simulated annealing (SA) method for optimization of a kinoform computer generated hologram (CGH) is analyzed and the SA method is modified to reduce a reconstruction error rate (ER) of the CGH. The dependences of the quantization level of the hologram pattern and the size of the data on the ER are analyzed. To overcome saturation of the ER, the conventional SA method is modified as it magnifies a Fourier-transformed pattern in the intermediate step. The proposed method can achieve a small ER less than 1%, which is impossible in the conventional SA method.

System Implementation for Generating High Quality Digital Holographic Video using Vertical Rig based on Depth+RGB Camera (Depth+RGB 카메라 기반의 수직 리그를 이용한 고화질 디지털 홀로그래픽 비디오 생성 시스템의 구)

  • Koo, Ja-Myung;Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.964-975
    • /
    • 2012
  • Recently the attention on digital hologram that is regarded as to be the final goal of the 3-dimensional video technology has been increased. A digital hologram can be generated with a depth and a RGB image. We proposed a new system to capture RGB and depth images and to convert them to digital holograms. First a new cold mirror was designed and produced. It has the different transmittance ratio against various wave length and can provide the same view and focal point to the cameras. After correcting various distortions with the camera system, the different resolution between depth and RGB images was adjusted. The interested object was extracted by using the depth information. Finally a digital hologram was generated with the computer generated hologram (CGH) algorithm. All algorithms were implemented with C/C++/CUDA and integrated in LabView environment. A hologram was calculated in the general-purpose computing on graphics processing unit (GPGPU) for high-speed operation. We identified that the visual quality of the hologram produced by the proposed system is better than the previous one.