• 제목/요약/키워드: computer-aided diagnosis

검색결과 160건 처리시간 0.023초

질감분석을 이용한 폐결핵의 자동진단 (Computer-Aided Diagnosis for Pulmonary Tuberculosis using Texture Features Analysis in Digital Chest Radiography)

  • 김대훈;고성진;강세식;김정훈;김창수
    • 한국콘텐츠학회논문지
    • /
    • 제11권11호
    • /
    • pp.185-193
    • /
    • 2011
  • 결핵은 환자를 미리 발견하여 치료함으로서, 질병의 전파를 차단하여 새로운 감염자가 발생을 최소화하고, 결핵을 조기에 예방 및 진단하는 것이 중요하다. 그러므로 현재 의학에서는 디지털 의료영상을 활용하여 질병진단의 보조 수단으로서 컴퓨터자동진단시스템이 응용되고 있다. 본 연구에서 주성분 분석(PCA)과 질감분석(Texture features)의 알고리즘을 이용하여 결핵의 질병을 자동으로 판별 및 인식하였으며, 그 기준에 따라 디지털 흉부 방사선영상에서 컴퓨터자동진단의 실용화를 위한 선행연구를 하였다. 실험결과는 주성분분석을 이용한 병변 인식률은 전문의의 질병에 대한 판독률보다 낮게 나타났지만, 질감분석의 인식률은 전문의 판독결과보다 높은 병변 인식률을 나타내었다. 그러므로 제안하는 알고리즘을 활용한 컴퓨터자동진단시스템은 임상의사에게 부가적인 보조 수단으로서 예비판독 단계의 정보를 제공하여 질병의 조기진단 및 예방이 가능할 것으로 사료된다.

위 내시경 영상을 이용한 병변 진단을 위한 딥러닝 기반 컴퓨터 보조 진단 시스템 (Deep Learning based Computer-aided Diagnosis System for Gastric Lesion using Endoscope)

  • 김동현;조현종
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.928-933
    • /
    • 2018
  • Nowadays, gastropathy is a common disease. As endoscopic equipment are developed and used widely, it is possible to provide a large number of endoscopy images. Computer-aided Diagnosis (CADx) systems aim at helping physicians to identify possibly malignant abnormalities more accurately. In this paper, we present a CADx system to detect and classify the abnormalities of gastric lesions which include bleeding, ulcer, neuroendocrine tumor and cancer. We used an Inception module based deep learning model. And we used data augmentation for learning. Our preliminary results demonstrated promising potential for automatically labeled region of interest for endoscopy doctors to focus on abnormal lesions for subsequent targeted biopsy, with Az values of Receiver Operating Characteristic(ROC) curve was 0.83. The proposed CADx system showed reliable performance.

CT Image Analysis of Hepatic Lesions Using CAD ; Fractal Texture Analysis

  • Hwang, Kyung-Hoon;Cheong, Ji-Wook;Lee, Jung-Chul;Lee, Hyung-Ji;Choi, Duck-Joo;Choe, Won-Sick
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.326-327
    • /
    • 2007
  • We investigated whether the CT images of hepatic lesions could be analyzed by computer-aided diagnosis (CAD) tool. We retrospectively reanalyzed 14 liver CT images (10 hepatocellular cancers and 4 benign liver lesions; patients who presented with hepatic masses). The hepatic lesions on CT were segmented by rectangular ROI technique and the morphologic features were extracted and quantitated using fractal texture analysis. The contrast enhancement of hepatic lesions was also quantified and added to the differential diagnosis. The best discriminating function combining the textural features and the values of contrast enhancement of the lesions was created using linear discriminant analysis. Textural feature analysis showed moderate accuracy in the differential diagnosis of hepatic lesions, but statistically insignificant. Combining textural analysis and contrast enhancement value resulted in improved diagnostic accuracy, but further studies are needed.

질감 기반 이미지 검색을 위한 질감 서술자 및 컴퓨터 조력 진단 시스템의 적용 (Texture Descriptor for Texture-Based Image Retrieval and Its Application in Computer-Aided Diagnosis System)

  • 뮤잠멜;팽소호;김덕환
    • 전자공학회논문지CI
    • /
    • 제47권4호
    • /
    • pp.34-43
    • /
    • 2010
  • 질감 정보는 객체 인식과 분류에서 중요한 역할을 하고 있다. 정확한 질환 판별을 위해 분류에서 사용되는 질감 특징은 식별성이 높아야 한다. 본 논문에서는 질감-기반 영상 검색 및 폐기종 진단을 위해 컴퓨터 조력진단(Computer-Aided Diagnosis) 시스템을 위한 새로운 질감 기술자를 제안한다. 제안한 질감 기술자는 이웃화소간의 차이값과 중심화소와 이웃화소간의 차이 값의 결합에 기반을 두고 있어 결합된 주변화소 차이(Combined Neighborhood Difference; CND)라고 한다. 화소들간의 CND는 비교후 이진 코드워드로 변환된다. 그다음에, 식별성이 높은 값을 생성하기 위하여 이진 계수가 코드워드에 할당된다. 이와 같은 값들의 분포가 계산되어 질감 특징 벡터를 구성한다. Outex와 Brodatz 데이터집합을 이용한 질감 특징 분류에 관련하여 CND는 92.5%의 정확성을 보이는 데 비해, LBP, LND와 Gabor 픽터는 89.3%, 90.7%와 83.6%의 정확성을 각각 보여준다. 본 논문에서는 CND를 이용한 폐기종의 진단 기능을 CAD 시스템에서 구현하였다.

폐암 생존율 향상을 위한 아다부스트 학습 기반의 컴퓨터보조 진단방법에 관한 연구 (Study of Computer Aided Diagnosis for the Improvement of Survival Rate of Lung Cancer based on Adaboost Learning)

  • 원철호
    • 재활복지공학회논문지
    • /
    • 제10권1호
    • /
    • pp.87-92
    • /
    • 2016
  • 본 논문에는 관심 영역의 폐실질 영역을 양성과 악성 결절의 분류를 위한 특징인자에 포함으로써 분류성능을 개선하였다. CT를 통해 확인되는 매우 작은 폐결절(4~10mm)은 고형 종양 내에 CT 데이터 복셀 수가 제한되어 기존 컴퓨터보조 진단도구를 통해 처리하기가 어렵다. 이러한 아주 작은 폐 결절의 경우 분석을 위해 주변의 실질을 포함하여 특징인자를 추출하는 것이 CT 복셀 세트를 증가시킬 수 있으며, CT 스캐너와 매개 변수에 대한 컴퓨터 보조진단도구의 유연성을 확보함으로써 진단 성능을 개선할 수 있다. 나이브 베이스와 SVM 약분류기를 이용하는 아다부스트 학습을 통해 304개의 특징인자로부터 유효한 특징인자를 결정하였으며, 제안한 방법을 COPDGene 데이터에 적용한 결과 100%의 정확도, 민감도 및 특이도의 결과를 획득하여 컴퓨터 보조진단에 유용하게 사용될 수 있음을 보였다.

환자 대장 CT 프로파일을 이용한 전자적 장세척 방법 (An Electronic Colon Cleansing Method using a Patient Colon CT Profile)

  • 김한별;김동성
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권8호
    • /
    • pp.493-500
    • /
    • 2008
  • 가상 대장 내시경을 위해서 환자 대장 CT 프로파일을 이용한 전자적 장세척 방법을 제안한다. 제안된 방법은 관강 영역을 cubic seeded region growing(SRG) 방법을 이용하여 추출하고, 이에 인접한 tagged material(TM)을 제거한다. TM의 경계에서 Air-TM의 partial volume(PV) 효과로 발생한 찌꺼기를 제거하고, TM-soft tissue(ST)의 PVE에 의해서 제거된 ST는 환자 CT 프로파일을 이용해서 복원한다. 제안된 방법을 16명의 가상 내시경 환자 CT 데이타에 적용해서 임상의의 주관적인 평가와 computer-aided diagnosis(CAD)의 정량적 평가에서 매우 고무적인 결과를 획득했다.

거리 기반 유사도 측정을 통한 유방 초음파 영상의 내용 기반 검색 컴퓨터 보조 진단 시스템에 관한 연구 (A Study of CBIR(Content-based Image Retrieval) Computer-aided Diagnosis System of Breast Ultrasound Images using Similarity Measures of Distance)

  • 김민정;조현종
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1272-1277
    • /
    • 2017
  • To assist radiologists for the characterization of breast masses, Computer-aided Diagnosis(CADx) system has been studied. The CADx system can improve the diagnostic accuracy of radiologists by providing objective information about breast masses. Morphological and texture features were extracted from the breast ultrasound images. Based on extracted features, the CADx system retrieves masses that are similar to a query mass from a reference library using a k-nearest neighbor (k-NN) approach. Eight similarity measures of distance, Euclidean, Chebyshev(Minkowski family), Canberra, Lorentzian($F_2$ family), Wave Hedges, Motyka(Intersection family), and Cosine, Dice(Inner Product family) are evaluated by ROC(Receiver Operating Characteristic) analysis. The Inner Product family measure used with the k-NN classifier provided slightly higher performance for classification of malignant and benign masses than those with the Minkowski, $F_2$, and Intersection family measures.

다각도 정보융합 방법을 이용한 지능형 에이전트 시스템 (An Intelligent Agent System using Multi-View Information Fusion)

  • 이현숙
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권12호
    • /
    • pp.11-19
    • /
    • 2014
  • 본 논문에서는 데이터마이닝모듈과 정보융합모듈을 핵심구성요소로 가지는 지능형에이전트 시스템을 설계하고 다각도 정보를 융합하여 진단전문가시스템으로 활용할 수 있는 가능성을 제시한다. 데이터마이닝모듈에서는 퍼지신경망 OFUN-NET에 의하여 다각도의 데이터를 분석하고 퍼지 클러스터 정보를 지식베이스로 구축한다. 정보융합모듈과 응용모듈에서는 가능성정도로 제공되는 진단결과와 불확실 결정상태나 비대칭의 발견과 같은 전문가의 진단에 유용한 정보를 제공해 주고 있다. 또한 DDSM 벤치마크 데이터베이스로부터 획득한 디지털 유방 x선 영상의 BI-RADS 기반 특징데이터를 가지고 실험한 결과는 기존의 방법보다 높은 분류 정확도를 보여주면서 컴퓨터보조진단시스템으로서의 가능성을 보여주고 있다.

Imaging Human Structures

  • Kim Byung-Tae;Choi Yong;Mun Joung Hwan;Lee Dae-Weon;Kim Sung Min
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권5호
    • /
    • pp.283-294
    • /
    • 2005
  • The Center for Imaging Human Structures (CIH) was established in December 2002 to develop new diagnostic imaging techniques and to make them available to the greater community of biomedical and clinical researchers at Sungkyunkwan University. CIH has been involved in 5 specific activities to provide solutions for early diagnosis and improved treatment of human diseases. The five area goals include: 1) development of a digital mammography system with computer aided diagnosis (CAD); 2) development of digital radiological imaging techniques; 3) development of unified medical solutions using 3D image fusion; 4) development of multi-purpose digital endoscopy; and, 5) evaluation of new imaging systems for clinical application