1 |
S. C. B. Lo, L.-Y. Hsu, M. T. Freedman, Y.-M. F. Lure, and H. Zhao, "Classification of Lung Nodules in Diagnostic CT: An Approach Based on 3-D Vascular Features, Nodule Density Distributions, and Shape Features," Proceedings of SPIE Medical Imaging Conference, vol. 5032, pp. 183-189, 2003.
|
2 |
S. Swensen, M. Silverstein, D. Ilstrup, C. Schleck, and E. Edell, "The Probability of Malignancy in Solitary Pulmonary Nodules," Archives of Internal Medicine, vol. 157, pp. 849-855, 1997.
DOI
|
3 |
M. F. McNitt-Gray, E. M. Hart, N. Wyckoff, J. W. Sayre, J. G. Goldin, and D. R. Aberle, "A pattern classification approach to characterizing solitary pulmonary nodes inaged on high resolution CT: Preliminary results," Medical Physics, vol. 26, pp. 881-888, 1999.
|
4 |
M. F. McNitt-Gray, N. Wyckoff, J. W. Sayre, J. G. Goldin, and D. R. Aberle, "The effects of co-occurrence matrix based texture parameters on the classification of solitary pulmonary nodules imaged on computed tomography," Computerized Medical Imaging and Graphics, vol. 23, pp. 339-348, 1999.
DOI
|
5 |
S. G. Armato, M. B. Altman, J. Wilkie, S. Sone, F. Li, K. Doi, and A. S. Roy, "Automated lung nodule classification following automated nodule detection on CT: A serial approach," Medical Physics, vol. 30, pp. 1188-1197, 2003.
DOI
|
6 |
S. Takashima, S. Sone, F. Li, Y. Maruyama, M. Hasegawa, T. Matsushita, F. Takayama, and M. Kadoya, "Small Solitary Pulmonary Nodules (>=1 cm) Detected at Population-Based CT Screening for Lung Center: Reliable High-Resolution CT Features of Benign Lesions," American Journal of Roentgenology, vol. 180, pp. 955-964, 2003.
DOI
|
7 |
J. W. Gurney, "Determining the Likelihood of Malignancy in Solitary Pulmonary Nodules with Bayesian Analysis: Part I. Theory," Radiology, vol. 186, pp. 405-413, 1993.
DOI
|
8 |
B. Sahiner, H.-P. Chan, N. Petrick, M. A. Helvie, and M. M. Goodsitt, "Computerized charac- terization of masses on mammograms: The rubber band straightening transform and texture analysis," Medical Physics, vol. 25, pp. 516-526, 1998.
DOI
|
9 |
K. I. Laws, "Rapid texture identification," in Image Processing for Missile Guidance. vol. 238, T. F. Wiener, Ed., ed Bellingham, Washington: The Society of Photo-Optical Instrumentation Engineers, pp. 376-280, 1980.
|
10 |
Y. Matsuki, K. Nakamura, H. Watanabe, T. Aoki, H. Nakata, S. Katsuragawa, and K. Doi, "Usefulness of an Artificial Neural Network for Differentiating Benign from Malignant Pulmonary Nodules on High-Resolution CT: Evaluation with Receiver Operating Characteristic Analysis," American Journal of Roentgenology, vol. 178, pp. 657-663, 2002.
DOI
|
11 |
M. Gomez, J. Raven, P. Nietert, F. Ginty, J. Miller, C. Hammond, K. Taylor, and G. Silvestri, "Development and Testing of Multivariate Statistical Model To Predict Malignancy of Small (<1.5cm) Pulmonary Nodules," American Journal of Respiratory and Critical Care Medicine, vol. 179, p. A1109, 2009.
|
12 |
D. Zinovev, D. Raicu, J. Furst, and S. G. Armato III, "Predicting Radiological Panel Opinions Using a Panel of Machine Learning Classifiers," Algorithms, vol. 2, pp. 1473-1502, 2009.
DOI
|
13 |
W. X.-h. Chen Hui, M. Da-quing, and M. Bin-rong, "Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pumonary nodules by computed tomography," Chinese Medical Journal, vol. 120, pp. 1211-1215, 2007.
|