폐암 생존율 향상을 위한 아다부스트 학습 기반의 컴퓨터보조 진단방법에 관한 연구

Study of Computer Aided Diagnosis for the Improvement of Survival Rate of Lung Cancer based on Adaboost Learning

  • 투고 : 2016.02.14
  • 심사 : 2016.02.22
  • 발행 : 2016.02.29

초록

본 논문에는 관심 영역의 폐실질 영역을 양성과 악성 결절의 분류를 위한 특징인자에 포함으로써 분류성능을 개선하였다. CT를 통해 확인되는 매우 작은 폐결절(4~10mm)은 고형 종양 내에 CT 데이터 복셀 수가 제한되어 기존 컴퓨터보조 진단도구를 통해 처리하기가 어렵다. 이러한 아주 작은 폐 결절의 경우 분석을 위해 주변의 실질을 포함하여 특징인자를 추출하는 것이 CT 복셀 세트를 증가시킬 수 있으며, CT 스캐너와 매개 변수에 대한 컴퓨터 보조진단도구의 유연성을 확보함으로써 진단 성능을 개선할 수 있다. 나이브 베이스와 SVM 약분류기를 이용하는 아다부스트 학습을 통해 304개의 특징인자로부터 유효한 특징인자를 결정하였으며, 제안한 방법을 COPDGene 데이터에 적용한 결과 100%의 정확도, 민감도 및 특이도의 결과를 획득하여 컴퓨터 보조진단에 유용하게 사용될 수 있음을 보였다.

In this paper, we improved classification performance of benign and malignant lung nodules by including the parenchyma features. For small pulmonary nodules (4-10mm) nodules, there are a limited number of CT data voxels within the solid tumor, making them difficult to process through traditional CAD(computer aided diagnosis) tools. Increasing feature extraction to include the surrounding parenchyma will increase the CT voxel set for analysis in these very small pulmonary nodule cases and likely improve diagnostic performance while keeping the CAD tool flexible to scanner model and parameters. In AdaBoost learning using naive Bayes and SVM weak classifier, a number of significant features were selected from 304 features. The results from the COPDGene test yielded an accuracy, sensitivity and specificity of 100%. Therefore proposed method can be used for the computer aided diagnosis effectively.

키워드

참고문헌

  1. Y. Matsuki, K. Nakamura, H. Watanabe, T. Aoki, H. Nakata, S. Katsuragawa, and K. Doi, "Usefulness of an Artificial Neural Network for Differentiating Benign from Malignant Pulmonary Nodules on High-Resolution CT: Evaluation with Receiver Operating Characteristic Analysis," American Journal of Roentgenology, vol. 178, pp. 657-663, 2002. https://doi.org/10.2214/ajr.178.3.1780657
  2. M. Gomez, J. Raven, P. Nietert, F. Ginty, J. Miller, C. Hammond, K. Taylor, and G. Silvestri, "Development and Testing of Multivariate Statistical Model To Predict Malignancy of Small (<1.5cm) Pulmonary Nodules," American Journal of Respiratory and Critical Care Medicine, vol. 179, p. A1109, 2009.
  3. D. Zinovev, D. Raicu, J. Furst, and S. G. Armato III, "Predicting Radiological Panel Opinions Using a Panel of Machine Learning Classifiers," Algorithms, vol. 2, pp. 1473-1502, 2009. https://doi.org/10.3390/a2041473
  4. W. X.-h. Chen Hui, M. Da-quing, and M. Bin-rong, "Neural network-based computer-aided diagnosis in distinguishing malignant from benign solitary pumonary nodules by computed tomography," Chinese Medical Journal, vol. 120, pp. 1211-1215, 2007.
  5. S. C. B. Lo, L.-Y. Hsu, M. T. Freedman, Y.-M. F. Lure, and H. Zhao, "Classification of Lung Nodules in Diagnostic CT: An Approach Based on 3-D Vascular Features, Nodule Density Distributions, and Shape Features," Proceedings of SPIE Medical Imaging Conference, vol. 5032, pp. 183-189, 2003.
  6. S. Swensen, M. Silverstein, D. Ilstrup, C. Schleck, and E. Edell, "The Probability of Malignancy in Solitary Pulmonary Nodules," Archives of Internal Medicine, vol. 157, pp. 849-855, 1997. https://doi.org/10.1001/archinte.1997.00440290031002
  7. M. F. McNitt-Gray, E. M. Hart, N. Wyckoff, J. W. Sayre, J. G. Goldin, and D. R. Aberle, "A pattern classification approach to characterizing solitary pulmonary nodes inaged on high resolution CT: Preliminary results," Medical Physics, vol. 26, pp. 881-888, 1999.
  8. M. F. McNitt-Gray, N. Wyckoff, J. W. Sayre, J. G. Goldin, and D. R. Aberle, "The effects of co-occurrence matrix based texture parameters on the classification of solitary pulmonary nodules imaged on computed tomography," Computerized Medical Imaging and Graphics, vol. 23, pp. 339-348, 1999. https://doi.org/10.1016/S0895-6111(99)00033-6
  9. S. G. Armato, M. B. Altman, J. Wilkie, S. Sone, F. Li, K. Doi, and A. S. Roy, "Automated lung nodule classification following automated nodule detection on CT: A serial approach," Medical Physics, vol. 30, pp. 1188-1197, 2003. https://doi.org/10.1118/1.1573210
  10. S. Takashima, S. Sone, F. Li, Y. Maruyama, M. Hasegawa, T. Matsushita, F. Takayama, and M. Kadoya, "Small Solitary Pulmonary Nodules (>=1 cm) Detected at Population-Based CT Screening for Lung Center: Reliable High-Resolution CT Features of Benign Lesions," American Journal of Roentgenology, vol. 180, pp. 955-964, 2003. https://doi.org/10.2214/ajr.180.4.1800955
  11. J. W. Gurney, "Determining the Likelihood of Malignancy in Solitary Pulmonary Nodules with Bayesian Analysis: Part I. Theory," Radiology, vol. 186, pp. 405-413, 1993. https://doi.org/10.1148/radiology.186.2.8421743
  12. B. Sahiner, H.-P. Chan, N. Petrick, M. A. Helvie, and M. M. Goodsitt, "Computerized charac- terization of masses on mammograms: The rubber band straightening transform and texture analysis," Medical Physics, vol. 25, pp. 516-526, 1998. https://doi.org/10.1118/1.598228
  13. K. I. Laws, "Rapid texture identification," in Image Processing for Missile Guidance. vol. 238, T. F. Wiener, Ed., ed Bellingham, Washington: The Society of Photo-Optical Instrumentation Engineers, pp. 376-280, 1980.