• 제목/요약/키워드: computer topology

검색결과 611건 처리시간 0.03초

Reliability-Based Topology Optimization with Uncertainties

  • Kim Chwa-Il;Wang Se-Myung;Bae Kyoung-Ryun;Moon Hee-Gon;Choi Kyung-K.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.494-504
    • /
    • 2006
  • This research proposes a reliability-based topology optimization (RBTO) using the finite element method. RBTO is a topology optimization based on probabilistic (or reliability) constraints. Young's modulus, thickness, and loading are considered as the uncertain variables and RBTO is applied to static and eigenvalue problems. The RBTO problems are formulated and a sensitivity analysis is performed. In order to compute probability constraints, two methods-RIA and PMA-are used. Several examples show the effectiveness of the proposed method by comparing the classical safety factor method.

비선형 및 Eddy Current효과를 고려한 전자기 시스템의 위상 최적 설계 (Topology Optimization of Electromagnetic Systems with Nonlinear and Eddy Current Effects)

  • 강제남;왕세명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.768-770
    • /
    • 2001
  • The topology optimizations of electromagnetic systems with the nonlinear and the eddy current effects are studied using the finite element method. The topology design sensitivity formulations of nonlinear magnetostatics and eddy current systems are derived using the adjoint variable method. A computer program is developed using object orient programming and applied to the topology optimization of a C-core actuator. A numerical study shows the effects of saturation and eddy current by comparing results of topology optimizations.

  • PDF

유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계 (Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms)

  • 여백유;박춘욱;강문명
    • 한국공간구조학회논문집
    • /
    • 제2권3호
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Smooth Boundary Topology Optimization Using B-spline and Hole Generation

  • Lee, Soo-Bum;Kwak, Byung-Man;Kim, Il-Yong
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.11-20
    • /
    • 2007
  • A topology optimization methodology, named "smooth boundary topology optimization," is proposed to overcome the shortcomings of cell-based methods. Material boundary is represented by B-spline curves and their control points are considered as design variables. The design is improved by either creating a hole or moving control points. To determine which is more beneficial, a selection criterion is defined. Once determined to create a hole, it is represented by a new B-spline and recognized as a new boundary. Because the proposed method deals with the control points of B-spline as design variables, their total number is much smaller than cell-based methods and it ensures smooth boundaries. Differences between our method and level set method are also discussed. It is shown that our method is a natural way of obtaining smooth boundary topology design effectively combining computer graphics technique and design sensitivity analysis.

협대역 다중홉 전투무선망에서 기회적 데이터 중계 기법 (Opportunistic Data Relay Scheme for Narrowband Multihop Combat Radio Networks)

  • 이종관
    • 한국군사과학기술학회지
    • /
    • 제25권1호
    • /
    • pp.65-71
    • /
    • 2022
  • In this paper, we propose an opportunistic data relay scheme in narrowband multihop combat radio networks. Narrowband networks have physical restrictions on high-speed transmission. Furthermore, the topology changes dynamically due to the jamming of the enemy, signal interference between friendly forces, and movement of network entities. Therefore, the traditional relay scheme that collects topology information and calculates a relay path before transmission is unsuitable for such networks. Our proposed scheme does not collect topology information and transmits data opportunistically. The scheme can cause unnecessary data relaying that is not related to data delivery to the destination node. However, for small networks, the effect of increasing network throughput by not gathering topology information is much greater than the effect of reducing throughput by unnecessary data relays. We demonstrate the performance superiority of the proposed scheme through simulation in the worst case of network topology.

최단 경로 갱신문제를 해결하는 분산알고리듬 (An Efficient Distributed Algoritm for the Weighted Shortest-path Updating Problem)

  • 박정호;이경오;강규철
    • 한국정보처리학회논문지
    • /
    • 제7권6호
    • /
    • pp.1778-1784
    • /
    • 2000
  • We consider the weighted shortest path updating problem, that is, the problem to reconstruct the weighted shortest paths in response to topology change of the network. This appear proposes a distributed algorithms that reconstructs the weighted shortest paths after several processors and links are added and deleted. its message complexity and ideal-time complexity are O(p$^2$+q+n') and O(p$^2$+q+n') respectively, where n' is the number of processors in the network after the topology change, q is the number of added links, and p is the total number of processors in he biconnected components (of the network before the topology change) including the deleted links or added links.

  • PDF

Design for an Efficient Architecture for a Reflective Memory System and its Implementation

  • Baek, Il-Joo;Shin, Soo-Young;Choi, Jae-Young;Park, Tae-Rim;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1767-1770
    • /
    • 2003
  • This paper proposes an efficient network architecture for reflective memory system (RMS). Using this architecture, the time for broadcasting a shared-data to all nodes can be significantly shortened. The device named topology conversion switch (TCS) is implemented to realize the network architecture. The implemented TCS is applied to the ethernet based real time control network (ERCnet) to evaluate the performance.

  • PDF

A Medium-Voltage Matrix Converter Topology for Wind Power Conversion with Medium Frequency Transformers

  • Gu, Chunyang;Krishnamoorthy, Harish S.;Enjeti, Prasad N.;Zheng, Zedong;Li, Yongdong
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1166-1177
    • /
    • 2014
  • A new type of topology with medium-frequency-transformer (MFT) isolation for medium voltage wind power generation systems is proposed in this paper. This type of converter is a high density power conversion system, with high performance features suitable for next generation wind power systems in either on-shore or off-shore applications. The proposed topology employs single-phase cascaded multi-level AC-AC converters on the grid side and three phase matrix converters on the generator side, which are interfaced by medium frequency transformers. This avoids DC-Link electrolytic capacitors and/or resonant L-C components in the power flow path thereby improving the power density and system reliability. Several configurations are given to fit different applications. The modulation and control strategy has been detailed. As two important part of the whole system, a novel single phase AC-AC converter topology with its reliable six-step switching technique and a novel symmetrical 11-segment modulation strategy for two stage matrix converter (TSMC) is proposed at the special situation of medium frequency chopping. The validity of the proposed concept has been verified by simulation results and experiment waveforms from a scaled down laboratory prototype.

대규모 병렬컴퓨터를 위한 교차메쉬구조 및 그의 성능해석 (Performance Analysis of the XMESH Topology for the Massively Parallel Computer Architecture)

  • 김종진;최흥문
    • 전자공학회논문지B
    • /
    • 제32B권5호
    • /
    • pp.720-729
    • /
    • 1995
  • We proposed a XMESH(crossed-mesh) topology as a suitable interconnection for the massively parallel computer architectures, and presented performance analysis of the proposed interconnection topology. Horizontally, the XMESH has the same links as those of the toroidal mesh(TMESH) or toroid, but vertically, it has diagonal cross links instead of the vertical links. It reveals desirable interconnection characteristics for the massively parallel computers as the number of nodes increases, while retaining the same structural advantages of the TMESH such as the symmetric structure, periodic placement of subsystems, and constant degree, which are highly recommended features for VLSI/WSI implementations. Furthermore, n*k XMESH can be easily expanded without increasing the diameter as long as n.leq.k.leq.n+4. Analytical performance evaluations show that the XMESH has a shorter diameter, a shorter mean internode distance, and a higher message completion rate than the TMESH or the diagonal mesh(DMESH). To confirm these results, an optimal self-routing algorithm for the proposed topology is developed and is used to simulate the average delay, the maximum delay, and the throughput in the presence of contention. In all cases, the XMESH is shown to outperform the TMESH and the DMESH regardless of the communication load conditions or the number of nodes of the networks, and can provide an attractive alternative to those networks in implementing massively parallel computers.

  • PDF

A Three-Phase High Frequency Semi-Controlled Battery Charging Power Converter for Plug-In Hybrid Electric Vehicles

  • Amin, Mahmoud M.;Mohammed, Osama A.
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.490-498
    • /
    • 2011
  • This paper presents a novel analysis, design, and implementation of a battery charging three-phase high frequency semi-controlled power converter feasible for plug-in hybrid electric vehicles. The main advantages of the proposed topology include high efficiency; due to lower power losses and reduced number of switching elements, high output power density realization, and reduced passive component ratings proportionally to the frequency. Additional advantages also include grid economic utilization by insuring unity power factor operation under different possible conditions and robustness since short-circuit through a leg is not possible. A high but acceptable total harmonic distortion of the generator currents is introduced in the proposed topology which can be viewed as a minor disadvantage when compared to traditional boost rectifiers. A hysteresis control algorithm is proposed to achieve lower current harmonic distortion for the rectifier operation. The rectifier topology concept, the principle of operation, and control scheme are presented. Additionally, a dc-dc converter is also employed in the rectifier-battery connection. Test results on 50-kHz power converter system are presented and discussed to confirm the effectiveness of the proposed topology for PHEV applications.