• Title/Summary/Keyword: computer simulation program

Search Result 963, Processing Time 0.031 seconds

Design Improvement of the Smith Machine using Simulation on Musculoskeletal Model

  • Kim, Taewoo;Lee, Kunwoo;Kwon, Junghoon
    • International Journal of CAD/CAM
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • This study analyzes the characteristics of two different kinds of squat exercise through physical experiments and a computer simulation, i.e. one with a free weight and the other with a Smith machine are studied. This study also proposes a new design for the Smith machine, which has both the advantages of each type based on the results of the analysis. The muscle force and level of stimulation of the lower extremities during squatting were calculated by running an inverse dynamics analysis program on a musculoskeletal model together with the measured motion data. The calculated results were verified by comparing with the measured EMG data. The analysis showed that squatting using free weight is more effective than squatting using the Smith machine. Meanwhile, in order to design an improved Smith machine, which is the final goal of this study, the trajectory of the barbell of the subjects during free weight squatting was measured on the sagittal plane. The measurement showed that the average slope of the trajectory of the barbell is tilted backward by $10.7^{\circ}$. Based on this measurement, this study proposes a tilted design for an improved Smith machine.

Computer Simulation and Shape Design Sensitivity Analysis of the Valve inside the Reciprocal Compressor using Finite Element Model (유한 요소 모델을 이용한 왕복동식 압축기 밸브의 거동 해석 및 형상 설계 민감도 해석)

  • 이제원;왕세명;주재만;박승일;이성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.796-801
    • /
    • 2002
  • The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chain-ruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

  • PDF

Multiphase Simulation of Rubber and Air in the Cavity of Mold

  • Woo, Jeong Woo;Yang, Kyung Mi;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.263-268
    • /
    • 2016
  • In the polymer shaping process that uses molds, the quality of the molded products is determined not only by the flow of the (molten) polymer but also by the air venting in the cavity. Inadequate air venting in the cavity can cause defects in the product, such as voids, short shot, or black streaks. As it is critical to consider the location and size of the vents for proper venting of the air in the cavity, a method that predicts the flow of air and material is required. The venting of air by the flow of rubber inside the cavity was simulated by using a multi-phase computational fluid dynamics method. Through computer simulation, the interface of rubber and air over time was predicted. Then, the velocity and pressure distribution of the venting air were observed. Our research proposes a fundamental method for analyzing the multi-phase flow of polymer materials and air inside the cavity of a mold.

A Motion Analysis Study of Casers for Fish Boxes using Computer Simulation (컴퓨터 시뮬레이션을 이용한 어체 상자 제함기 동작 분석에 관한 연구)

  • Jung, Sung-Heon;Jun, Chul-Woong;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.56-61
    • /
    • 2019
  • In this country, mackerel landing, sorting, and packing are mostly performed manually, which is time consuming and labor intensive. An unloading automation system saves time and labor by automating the landing, sorting, and packing processes. Casers are devices for manufacturing packing boxes for fish used by unloading automation systems. The caser design in this study is for mackerel packing boxes. This caser makes a packing box based on a press using the caser's slide crank. When the caser makes a packing box, the manufacturing sequence is determined by the caser's production guide and assisting rod. The caser design in this study is simulated using a multi-body dynamics program. The simulation is used to analyze the caser and to visualize the box-making sequence.

Development of a Multi-body Dynamics Analysis System Using the Object-Oriented Concept (객체지향 개념을 이용한 다물체 동역학 해석 시스템 개발)

  • 한형석;이재경;서종휘;송현석;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.115-125
    • /
    • 2003
  • To analyze the applications of all types of mechanical systems, general purpose analysis programs have been developed and commercialized. However, it is customary to develop and use customized programs even though they sometimes require more work than a general purpose program. A customized program is simplified to adapt to a particular application from the beginning, is designed for small computers, and developed with hardware-in-the-loop in mind so it can be applied effectively. By adding design knowledge and bundling know-how to an analysis program, analysis time can be reduced. And because an analysis has to work in conjunction with other analysis programs, a proprietary program that the user can easily modify can be useful. In this thesis, a multi-body dynamics analysis system is presented using one of the most useful programming techniques, object-oriented concept. The object-oriented concept defines a problem from the physical world as an abstract object, an abstract model. The object becomes encapsulated with the data and method. Simulation is performed using the object's interface. It is then possible for the user and the developer to modify and upgrade the program without having particular knowledge of the analysis program. The method presented in this thesis has the following advantages. Since the mechanical components of the multi-body system converts independent modeling into a class, the modification, exchange, distribution, and reuse of elements are increased. It becomes easier to employ a new analysis method and interface with other S/W and H/W systems. To employ a new analysis method, there is no need to modify elements of the main solver and the Library. In addition, information can be communicated to each object through messaging. It makes the modeling of new elements easier using inheritance. When developing a S/W for the computer simulation of physical system, it is reasonable to use object-oriented modeling. Also, for multi-body dynamics analysis, it is possible to develop a solver that is user-oriented.

Modern computer simulation for the design of concrete catenary shell structures

  • Lee, Joo Hong;Lee, Hyerin;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.661-667
    • /
    • 2018
  • The purpose of this study was to model and design a concrete catenary shell using a modern computer program without performing experiments. The modeling idea stems from the study by Pendergrast, but he listed supplementary items that should be improved in his paper. This study aims to resolve those issues and overcome the drawbacks of the study by Pendergrast. The process of experiment for the design of a catenary shell was reproduced by Grasshopper script. In order to ensure credibility, two models designed from the Grasshopper script were analyzed using a finite element program, SAP2000; one is a square-based catenary shell and the other is a special catenary shell called as the Naturtheater $Gr{\ddot{o}}tzingen$ shell, which was completed in 1977. First, the developed modeling approach was proved to be reasonable from the analysis of the square-based shell. The reliability was further confirmed by a comparison between the current and previous analysis results for the Naturtheater $Gr{\ddot{o}}tzingen$ shell.

Computer Simulation for Working Condition of Undergroundwork Using TOP DOWN Technique (TOP DOWN 지하공사의 작업환경체크 컴퓨터시물레이션에 관한 기초적 연구)

  • 고성석;손기상;심경수
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.96-105
    • /
    • 1995
  • The better industry develops, the more spaces need but in the limited area. Most building become larger and more complicated if the more spaces need in the constant area. And this leads to do underground work in long period generally six(6) months for 6 basement stories due to the selection of TOP DOWN technique. Working environment in this underground area can be problems and should not be overlooked, because air quality in underground spaces become quickly worse. Recently, department name to control construction safety has been changed to ENVIRONMENT & SAFETY TEAM from SAFETY TEAM. This means that it is very important to control against environmental condition at site so much. Overall construction work as well as underground work should conform to the requirement of working environment, particularly against inhabitants around the construction area. Strut protection, one of earth protection method, in case to 40m long strut may become weaker due to thermal stress or its longitudinally compressive strain and the another one, earth anchor protection may not be applied to the site In case of encroaching on vertical underground borderline because of regulation to prohibit it. It is necessary that TOP DOWN technique should be introduced in order to solve the external and internal problem of the site such as difficulty level of the work, potential danger with excavating depth, and shortening workperiod. It is needed that improving way of working condition should be shown and simplified computer simulation program should be also provided for checking pollution level & ventilation, excluding of lighting problem here. Results measured with conformance to the Regulation for Working Environment Measurement, enforced by Ministry of Labor have been applied to the computer program developed here. Sample air taken at unit workplace which was considered as exposing condition of pollutant at breathing point and within a range of behavior of the workers, Identified exposing group in underground work, using Moded Flow Life Finally, three types of ventilation system, type I with blower & ventilator, type II natural supply with mechanical ventilation system, and type I mechanical ventilation with Drivent Fan Unit System are selected for this study.

  • PDF

A Study on the Simulation of Beam Trajectory in the Electron-Gun by FDM using the Irregular Mesh (불균등 Mesh를 사용한 유한차분법에 의한 전자총의 Beam 궤적 Simulation에 관한 연구)

  • 김남호;정현열;이무용;정기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.8
    • /
    • pp.719-731
    • /
    • 1991
  • This paper introduces a relatively simple computer simulation method for analyzing trajectory of electron beam in cylindrical electrode of the CRT, which outputs the cutoff voltag, beam current, spot size and plots out the trajectory, rom the input data on physical construction and applied voltages of electron gun. In order to improve computing speed in obtaining potential distibution, the authors have ivided the space into seveal setos and allocated different mesh sizes epending on the acuracy required to each sector and applied the finite difference method in calculation. The plot of trajectoy obtained from the simulation provided useful insight into the focusing mechanism of the CRT. The computed and measured result including beam curent. spot sizs and cutoff voltages for several model guns have ageed within eperimental error. The simulation program enables the designer to compare the effects of varied electrode shpe without the epense of building an actual gun and may be appli in esigning and implementing the electron gun assemply.

  • PDF

Effect of pre-hospital BLS simulation training on the paramedic's competency

  • Jung, Jun-Ho;Cho, Byung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.103-109
    • /
    • 2018
  • The purpose of the study is to investigate the effect of a simulation training of BLS in paramedics in pre-hospital situation. This a nonequivalence control quasi-experimental study. The study subjects were 8 paramedics of experimental group and 8 paramedics of control group in K fire department. An informed consent was written by the subjects after explaining of the purpose of the study. The study methods consisted of conventional education and practice training. The conventional education was done for 30 minutes and the practice training was taken by four trainees of one group and the instructor demonstrated Basic Iife Support (BLS) performance for three minutes. Each trainer peformed BLS for ten minutes. In the beginning of the course, two paramedics got off from the ambulance and performed BLS including 5 cycles of Cardiopulmonary Resuscitation (CPR). Soon after the BLS, another two paramedics performed pre-hospital BLS survey. The education was guided by two professors of emergency medical technology, two Basic Iife Support instructors, and two emergency rescue directors. Pre-hospital BLS was measured by a 5-point Likert scale. Higher score means higher performance skills. The data were analyzed using SPSS/WIN 22.0 program set at significance level of p<05. The effect of simulation education was much more significant than the conventional education in BLS. The simulation education is very important and effective in improving the clinical performance skills of paramedics than the conventional education. The simulation education can provide the virtual environment of cardiac arrest to the paramedics. In conclusion, the simulation education can provide the effective teaching methods for various practice performance skills and solution by critical thinking in the paramedics and healthcare providers in the future.

An Analysis of the Protective Potential Distribution against Corrosion for Hull ICCP with Computer simulation (컴퓨터 Simulation을 통한 선체 음극방식(ICCP)의 방식전위분포해석)

  • Im, Gwan-Jin;Kim, Ki-Joon;Lee, Myung-Hoon;Moon, Kyung-Man
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.395-400
    • /
    • 2005
  • The ship hull part is always exposed to severe corrosive environments. Therefore, it should be protected in appropriate ways to reduce corrosion problems. So there are two effective methods in order to protect the corrosion of ship hull. One is the paint coating as a barrier between steel and electrolyte (seawater) and the other is the cathodic protection(CP) supplying protection current. In the conventional design process of the cathodic protection system the required current densities of protected materials have been used. However, the anode position of field or laboratory experiment for obtaining the required current density for CP is significantly different from anode position for real structures. Therefore, the recent CP design must consider the optimum anode position for potential distribution equally over the ship hull. The CP design companies in the advanced countries can obtain the potential distribution results on the cathodic materials by using the computer analysis module. This study would show how to approach the potential analysis in the field of corrosion engineering. The computer program can predict the under protection area on the structure when the boundary condition and analysis procedure are reasonable. In this analysis the polarization curve is converted to the boundary condition in material data.

  • PDF