• Title/Summary/Keyword: computer image analysis

Search Result 1,466, Processing Time 0.033 seconds

A Study on the Detection Method of Red Tide Area in South Coast using Landsat Remote Sensing (Landsat 위성자료를 이용한 남해안 적조영역 검출기법에 관한 연구)

  • Sur, Hyung-Soo;Song, In-Ho;Lee, Chil-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.129-141
    • /
    • 2006
  • The image data amount is increasing rapidly that used geography, sea information etc. with great development of a remote sensing technology using artificial satellite. Therefore, people need automatic method that use image processing description than macrography for analysis remote sensing image. In this paper, we propose that acquire texture information to use GLCM(Gray Level Co-occurrence Matrix) in red tide area of artificial satellite remote sensing image, and detects red tide area by PCA(principal component analysis) automatically from this data. Method by sea color that one feature of remote sensing image of existent red tide area detection was most. but in this paper, we changed into 2 principal component accumulation images using GLCM's texture feature information 8. Experiment result, 2 principal component accumulation image's variance percentage is 90.4%. We compared with red tide area that use only sea color and It is better result.

  • PDF

A Study on Three-Dimensional Image Modeling and Visualization of Three-Dimensional Medical Image (삼차원 영상 모델링 및 삼차원 의료영상의 가시화에 관한 연구)

  • Lee, Kun;Gwun, Oubong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.27-34
    • /
    • 1997
  • 3-D image modeling is in high demand for automated visual inspection and non-destructive testing. It also can be useful in biomedical research, medical therapy, surgery planning, and simulation of critical surgery (i.e. cranio-facial). Image processing and image analysis are used to enhance and classify medical volumetric data. Analyzing medical volumetric data is very difficult In this paper, we propose a new image modeling method based on tetrahedrization to improve the visualization of three-dimensional medical volumetric data. In this method, the trivariate piecewise linear interpolation is applied through the constructed tetrahedral domain. Also, visualization methods including iso-surface, color contouring, and slicing are discussed. This method can be useful to the correct and speedy analysis of medical volumetric data, because it doesn't have the ambiguity problem of Marching Cubes algorithm and achieves the data reduction. We expect to compensate the degradation of an accuracy by using an adaptive sub-division of tetrahedrization based on least squares fitting.

  • PDF

Development of a Detection and Recognition System for Rectangular Marker (사각형 마커 검출 및 인식 시스템 개발)

  • Kang Sun-Kyung;Lee Sang-Seol;Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.97-107
    • /
    • 2006
  • In this paper, we present a method for the detection and recognition of rectangular markers from a camera image. It converts the camera image to a binary image and extracts contours of objects in the binary image. After that. it approximates the contours to a list of line segments. It finds rectangular markers by using geometrical features which are extracted from the approximated line segments. It normalizes the shape of extracted markers into exact squares by using the warping technique. It extracts feature vectors from marker image by using principal component analysis. It then calculates the distance between feature vector of input marker image and those of standard markers. Finally, it recognizes the marker by using minimum distance method. Experimental results show that the Proposed method achieves 98% recognition rate at maximum for 50 markers and execution speed of 11.1 frames/sec for images which contains eleven markers.

  • PDF

Implementation of Video Surveillance System with Motion Detection based on Network Camera Facilities (움직임 감지를 이용한 네트워크 카메라 기반 영상보안 시스템 구현)

  • Lee, Kyu-Woong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.169-177
    • /
    • 2014
  • It is essential to support the image and video analysis technology such as motion detection since the DVR and NVR storage were adopted in the real time visual surveillance system. Especially the network camera would be popular as a video input device. The traditional CCTV that supports analog video data get be replaced by the network camera. In this paper, we present the design and implementation of video surveillance system that provides the real time motion detection by the video storage server. The mobile application also has been implemented in order to provides the retrieval functionality of image analysis results. We develop the video analysis server with open source library OpenCV and implement the daemon process for video input processing and real-time image analysis in our video surveillance system.

The Study on the Visual illusions and the Image of the Clothing by the Computer Simulation through the combination of the collars and the sleeves (Computer Simulation을 이용한 의복의 착시효과와 이미지 연구 Collar와 Sleeve의 조합을 중심으로-)

  • Choi, Jung;Lee, Kyoung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.5
    • /
    • pp.915-929
    • /
    • 1996
  • The purpose of this study is to investigate the visual illusions and image of the combinated collars and sleeves which are combinated by the computer simulation. The detail object of this study as follows; 1) to know the visual illusions of the clothing as the collar and sleeves are combinated 2) to constract the clothing image using sementic differential scales 3) to know the differet image of the clothing as the collars and sleeves are combinted 4) to know the interaction effect of the collars and sleeves of the clothing The detail method of this study is as follows; In the first experiment, there are two groups; the first 8 groups are the combination of the same collar and the different sleeves. The second 8 groups are the combination of the same sleeve and the different collars. The second experiment has done for the 32 clothings which are the combination of the 8 collars and 4 sleeves. For the 14 clothing the image has tested by 13 semantic differential bi- polar scale. The subjects were 50 female students majoring in clothing and textile. The data analyzed by Kendall cofficient of concodance, Factor analysis, Anova and scheffe's test. Briefly the image of the clothing is much influenced by the varing of the collar than that of the sleeve. Thus, we also can conclude that the recognition of the clothing are much more dependent on the collar than sleeve.

  • PDF

A New Hybrid Weight Pooling Method for Object Image Quality Assessment with Luminance Adaptation Effect and Visual Saliency Effect (광적응 효과와 시각 집중 효과를 이용한 새로운 객관적 영상 화질 측정 용 하이브리드 가중치 풀링 기법)

  • Shahab Uddin, A.F.M.;Kim, Donghyun;Choi, Jeung Won;Chung, TaeChoong;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.827-835
    • /
    • 2019
  • In the pooling stage of a full reference image quality assessment (FR-IQA) technique, the global perceived quality for any distorted image is usually measured from the quality of its local image patches. But all the image patches do not have equal contribution when estimating the overall visual quality since the degree of degradation on those patches depends on various considerations i.e., types of the patches, types of the distortions, distortion sensitivities of the patches, saliency score of the patches, etc. As a result, weighted pooling strategy comes into account and different weighting mechanisms are used by the existing FR-IQA methods. This paper performs a thorough analysis and proposes a novel weighting function by considering the luminance adaptation as well as the visual saliency effect to offer more appropriate local weights, which can be adopted in the existing FR-IQA frameworks to improve their prediction accuracy. The extended experimental results show the effectiveness of the proposed weighting function.

WLDF: Effective Statistical Shape Feature for Cracked Tongue Recognition

  • Li, Xiao-qiang;Wang, Dan;Cui, Qing
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.420-427
    • /
    • 2017
  • This paper proposes a new method using Wide Line Detector based statistical shape Feature (WLDF) to identify whether or not a tongue is cracked; a cracked tongue is one of the most frequently used visible features for diagnosis in traditional Chinese Medicine (TCM). We first detected a wide line in the tongue image, and then extracted WLDF, such as the maximum length of each detected region, and the ratio between maximum length and the area of the detected region. We trained a binary support vector machine (SVM) based on the WLDF to build a classifier for cracked tongues. We conducted an experiment based on our proposed scheme, using 196 samples of cracked tongues and 245 samples of non-cracked tongues. The results of the experiment indicate that the recognition accuracy of the proposed method is greater than 95%. In addition, we provide an analysis of the results of this experiment with different parameters, demonstrating the feasibility and effectiveness of the proposed scheme.

Moir$\acute{e}$s in 3-D Display: How to eliminate them

  • Son, Jung-Young;Kim, Shin-Hwan;Jung, Dae-Hyun;Park, Min-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.939-942
    • /
    • 2008
  • Moir$\acute{e}$s are a natural interference phenomenon which occurs whenever a transparent regular pattern plate is overlapped on another regular pattern plate. In the contact-type 3 dimensional imaging systems, the moires are inherent because an image display panel is seen through a viewing zone forming optical plate. The mathematical analysis of moires in the systems shows that they can be minimized by the proper selection of overlapping angles between them. The angle is different for pixels with different aspect ratios.

  • PDF

Robust Action Recognition Using Multiple View Image Sequences (다중 시점 영상 시퀀스를 이용한 강인한 행동 인식)

  • Ahmad, Mohiuddin;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.509-514
    • /
    • 2006
  • Human action recognition is an active research area in computer vision. In this paper, we present a robust method for human action recognition by using combined information of human body shape and motion information with multiple views image sequence. The principal component analysis is used to extract the shape feature of human body and multiple block motion of the human body is used to extract the motion features of human. This combined information with multiple view sequences enhances the recognition of human action. We represent each action using a set of hidden Markov model and we model each action by multiple views. This characterizes the human action recognition from arbitrary view information. Several daily actions of elderly persons are modeled and tested by using this approach and they are correctly classified, which indicate the robustness of our method.

  • PDF

Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

  • Ayub, Umer;Ahsan, Syed M.;Qureshi, Shavez M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1146-1165
    • /
    • 2022
  • A huge amount of data in the form of videos and images is being produced owning to advancements in sensor technology. Use of low performance commodity hardware coupled with resource heavy image processing and analyzing approaches to infer and extract actionable insights from this data poses a bottleneck for timely decision making. Current approach of GPU assisted and cloud-based architecture video analysis techniques give significant performance gain, but its usage is constrained by financial considerations and extremely complex architecture level details. In this paper we propose a data pipeline system that uses open-source tools such as Apache Spark, Kafka and OpenCV running over commodity hardware for video stream processing and image processing in a distributed environment. Experimental results show that our proposed approach eliminates the need of GPU based hardware and cloud computing infrastructure to achieve efficient video steam processing for face detection with increased throughput, scalability and better performance.