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Human action recognition is an active research area in computer vision.
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In this paper, we

present a robust method for human action recognition by using combined information of human
body shape and motion information with multiple views image sequence. The principal component

analysis is used to extract the shape feature of

human body and multiple block motion of the

human body is used to extract the motion features of human. This combined information with
multiple view sequences enhances the recognition of human action. We represent each action

using a set of hidden Markov modei

and we model

each action by multiple views. This

characterizes the human action recognition from arbitrary view information. Several daily actions of

elderly persons are modeled and tested by using
which indicate the robustness of our method.

1. Introduction

This contribution addresses the human action
recognition of elderly people from arbitrary direction
using their combined features, such as motion
features and shape feature during performing the
action. Recognition of action from image sequences
is very popular in computer vision community, since
it has applications in video surveillance and
monitoring, human-robot interactions, etc. Actually,
there is no rigid syntax and well defined structure is
available for human action recognition. This makes
human action recognition a more challenging and
sophisticated task.
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Figure 1. Human action in multiple view image
SOLICNCeS.
Several human action recognition methods have

been proposed in the past decades. A recent
detailed excellent survey can be found in [1].

this approach and they are correctly classified.

Researchers either use the human body shape or
silhouette information [10,12] or human maotion
information [8,11,13] for action recognition. Most of
the above action recognition techniques depend on
the viewing direction. The work of testing an action
using multi-view maotion learning is still unsolved. In
[7,14], authors used the view-invariant approaches.
There are some issues that affect the development
of models of actions and classifications, which are
as follows: (i) Action can be viewed by the motion
of the human body parts, (i} simple action and
complex action involve the motion of small number
and large number of body parts, respectively and the
motion is non-rigid in nature, (iii) an action can be
viewed as a series of silhouette images of the
human body and silhouette information that involves
no translation, rotation and scaling, (iv) same action
from different viewing direction appears different and
some part of the body may in occlusion, shown in
Fig. 1.

Based on the issues, motion of the body parts
and human body silhouette play important role for
recognition. Motion based feature can reveal the
approximation of moving direction of human body
and human action can be effectively characterized
by motion rather than other cues, such as color,
depth, and spatial features. On the other hand,
human body silhouette represents the pose of the
human body at any instant of time, and a series of
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sithouette images can be used to recognize human
action successfully. Therefore, the combined feature
can enhance the recognition accuracy of human
actions. Moreover, the same action from different
viewing angle looks different. Therefore, recognizing
human action from muitiple view sequence is a
difficult task. We propose to model and recognize
several actions of human using the combination of
(i) optical flow vectors, (i) shape feature vectors
with  multiple view image sequences. These
characterize robust action recognition. The actions
maodeling and classification in this work are: walking
at a place, raising a right hand, bowing, running at
a place, and sitting on the floor, respectively. We
use hidden Markov model for training each actions
in any viewing direction. Classification is finally
achieved by feeding a given (test) sequence in any
viewing direction to all the trained HMMs and
employing a likelihood measure to declare the action
performed in the image sequence. For training and
testing actions, we use the Korea University gesture
database [5].

This paper is organized as follows: Section 2
briefly summarizes the foreground extraction
algorithm. Section 3 describes the feature extraction
procedures. Section 4 describes briefly the HMM for
modeling and classifying action. Experimental results
and discussions of the selected approaches are
presented in Section 5. Finally, conclusions are
drawn in Section 6.

2. Preprocessing

We use background subtraction to extract the
foreground, since the background is relatively static
for all over the image sequence of an action.
Therefore, we adopt simple background modeling
technigue such as multiple Gaussian background
modeling for foreground extraction. After that, there
still exits some noises in the foreground, such as
motion shadow will inescapably existed in the
foreground. Therefore, shadow elimination method
should be adopted. After the shadow elimination
step, there may exist some small regions and
noises, so several filters such as erosion, dilation,
and connected component analysis should be
adopted for further preprocessing. There still exist
some holes or discrete pixels outside the original
human body silhouette; these can be removed by
using median filtering.

After preprocessing, we define an action region as
the rectangular area or a bounding box where an
action is occurred. The action region depends on
the distance between sensor and persons, person's

anthropometry, varieties of actions. Usually, action
region is smaller than the image area: therefore, we
select the action region inside the image frame
which includes approximately the average human
body shape of specific image sequence of the
specified action. The action region of an image is
extracted automatically from the filtered foreground
image by using row-column scanning. The bounding
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Figure 2. Preprocessing steps.

box are for a typical action is 90x 160 pixels. This
varies according to action types.

Figure 2 shows the preprocessing steps, where
the filtered foreground image (Fig.2{b)} resuits from
background subtraction, shadow elimination,
morphological operation and filtering. The action
region (Fig.2(c)) is extracted from foreground. For a
unique representation, we normalize the action region
to a fixed size. The action region is normalized by
using nearest neighbor (NN) interpolation method,
shown in Fig. 2(d).

3. Feature Extraction

In the feature extraction procedure, we extract the
motion features and shape features from the
specified action region.

3.1 Shape features

The silhouette images of the action region are
normalized to p pixels by ¢ pixels by using nearest
neighbor interpolation method, shown in Fig. 3(d).
Now, the human body silhouette may be considered
as a vector of dimension pg so that a typical action
region 60x80 becomes a vector of 4800, or a point
of 4800-dimensional space. Thus, all the human
body images in a sequence can form a sparse
matrix which represents a higher dimensional feature

space. For efficient use of the normalized action
region silhouette (NARS) image, we use principal
component analysis (PCA) to reduce the high

dimensional feature space into a lower dimensional
new feature space. PCA has been extensively used
in the field of face recognition. The use of PCA in
action recognition has been limited. In the paper, we
use PCA to extract the silhouette feature vectors for
pre~recognition of human action. Let the training set
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of the NARS images areFl,I‘z,...,FM The average

Zr

n~1
NARS image differs from the average ¥ by the
vector ¢, =TI,—¥. For any direction, this very large
set of vectors is then subject to PCA, which seeks a
set of M ortho—normal vectors, wu,, which best
describe the distribution of the data. Thek-th vector,
ug, I8 chosen [3], such that,

NARS of the set is defined by LD— Each

1 M T

A= ﬁn;(uk@n)ﬁ (n

The vectors, wu, and scalars 2\, are the
eigenvectors and eigenvalues, respectively, of the
covariance matrix of equation (2):

1 M -
— 2 92
3 4,1245"95“ 2)

The eigenvectors, u;, for i=1,2,..., M are ranked
according to their associated eigenvalues, ).. Now,
A new human body silhouette image (I} s
transformed into its eigen—-body silhouette
components (projected into the human body

silhouette space) by the equation, s, =uf(I'— %) for
k=1,2,.
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Figure 3. Silhouette images (upper-row), corresponding

L

cigen bowing images (middle row). and cumulative
varation of feature vectors (ower-row),

We select the number of Rnew feature vectors so
that maximum silhouette energy can preserve during
learning the features. Therefore, we use new shape
feature vectors, F=(s,,s,,...,s5)7 for every frame of
the sequence of any action in any viewing direction,
Figure 3 shows the sample silhouette images
(upper-fow) and  corresponding  eigen—images
(middle row), where the eigen-images for highest

gigenvalues represent the maximum energy of
silhouette, and cumulative variation of feature vectors
are shown in Fig. 3 (lower-row).

3.2 Motion features

In this paper, we use optical flow to estimate
motion, because it can precisely determine the
motion at any pixel. We calculate the optical flow
velocity at any pixel in the action region by using
gradient based optical flow technigue. The well
known optical flow constraint equation [2] or
gradient constraint equation is given by

pzvr(z,y,t>+pyvy($,y,t)+pt =0 (3)

Here, v, {z,y,t) and w,(z,yt) represent the
horizontal and vertical component of optical flow
motion, and p,.p, and p, represent the horizontal
gradient, vertical gradient, and temporal gradient,
respectively. Equation (3) consists of two unknown
components, constrained by only one linear
equation. So, more constraints are required to
determine the velocity components. We can consider
the global motion of human, when he/she performs
an action. We use the Horn's optical flow method
[2] for calculating the motion components from
consequent image frames.
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Figure 4. Global motion overlapping the buman in

Row- 1:
howing, row 4 sitting on floor, and row 5! runmng.

action. Walking, row-2: raise hand, row

Figure 4 shows the optical flow velocity
overlapping on the action region of several actions.
it is found that the related body parts invoive optical
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flow velocity. For example, when the person acts
"raising a right hand" action, then motion involves
only the right hand. Similarly, when the person acts
"sitting on the floor" action, then motion involves the
whole body.

For consistency of additional analysis, we
normalize the optical flow values, wv,(z,y,t) in the
action region. In order to extract the features, we
partition the action region into. multiple blocks, B(k)
of equal sizes. Therefore, the optical flow feature
vectors are extracted at each block with n number
of pixels by using the equations (4a) & 4(b):

1

Vkz,t = ; Vg (2,95t) (4a)
n (z,y)eB(k)
1
Vg = — vy, (Toyt) (
ky,t n(z’yé(k) ny \Tr ¥ 4b)

where, k=1,2,...,B and B=no. of blocks. Figure 5
shows sample optical flow in different views with
optical flow feature image.

(a) front view (b} —45° view (¢) +45° view

Motion
flow

Feature
vector

image
(a) front view (b) —45° view (¢) +45° view

Figure 5. Motion image with feature vectors image.

3.3 Combined features

For each image frame in any action, human body
silhouette features and optical flow velocity features
are combined as one feature vector. The features
used at any instant of time, ¢t of image sequence
(per image frame) are as follows:

—_ r
L= [vlz,ﬁ""Ul/x,ﬂvly,t?"'7’uby¢t731,t7""SM,t] (5)

where, L represents the motions features and M
represents the shape features. Each action video in
any view direction d can be represented as an
image sequence by the following equation (6):

o= [Il,d712,d""’IN,d] (6)

where, N represents the number of frames used
in an action video. The value of & depends on the
action type and the performers; typically
N=60~200. To use the body silhouette features

and optical flow velocity features as the input of
HMM, we convert the feature vector into discrete
symbols. In our experiment, each feature vector is
converted into one-dimensional sequence of 32
discrete symbols.

4. Action Modeling & Classification by HMMs

Hidden Markov Models has been successfully used
for speech recognition. We employ HMM for action
recognition since it can be applied to analyze the
time series with spatio-temporal variations.

4.1 Action modeling

in this paper, we use mulitiple observations HMMs
for modeling human actions. For multi-view
recognition of human actions, we build HMM model
for each action and for each viewing direction. For a
given action, we use HMM model A, ={4,B,x} for
any model action a in any viewing direction d,
where A,B, and = are defined in [8]. We can
consider a set of hidden Markov models for the
multi-view directions which is expressed as:

)‘a = {)‘al’)‘aZV"’Aad} (N

Each model represents the action from a specified
viewing angle. We use same topology for all HMMs,
i.e. we use six—state ergodic models. The number of
states is heuristically selected. Since, we use the
motion feature vector and the shape feature vector
for action recognition, then we consider multiple
observable symbols, O at each time ¢. We model
muitiple observation using discrete HMM models.
We use Baum-Welch algorithm [4]}[89] for iteratively
re-estimate model parameters to achieve the local
maximum.

4.2 Action classification

We classified the image sequences manually into
different classes and different views. The trained
model is used to classify the actions. The
forward-backward algorithm or the Viterbi -algorithm
can be used to classify the actions from any
specified view. The model parameters are adjusted
such a way that they can maximize the likelihood
function for classifying actions by using the given
set of training data.

A=argn’la'x,\near:tions P(OiAa) (8)
where, P(0l),) is the conditional probability for
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any arbitrary action a and it is computed by
P(O\,) =maxP(O,,), where,O is the observations
feature vector sequence of an unknown action. For
the observation sequence, 0=[0",09,...,0'7)
and the HMM X, according to Bayes rule, the
problem is how to evaluate P(Oi),), the probability
that the sequence was generated by HMM X . This

probability is calculated by using the forward or
backward algorithm [9].

5. Experimental Results and Discussion

5.1 Database

Experiments are performed on image sequences
that have 320x240 pixel resolution and 30 frames
per second. We use the Korea University (KU)
gesture database[5]which contains 14 representative
full body actions in the daily life of 20 performers. In
the database, ali the performers are eiderly people
(both male and female) with their age ranges from
60 to 80. The database contains 3D data and 2D
data. We use the 2D video data for analysis. Qur
training data set includes three views such as 0°,
—45% and +45°, respectively. The testing set can be
any arbitrary view. The duration of each action
depends on the type of action, which has a range
of 2~ 8 seconds.

(¢) Bowing

(d) Sitting on a floor

(e) Running at a place
Figure 6. Typical image sequences of human actions.

To apply HMMs, the features are transformed into
symbol sequences, O in the learning and recognition
phases. For each frame Z of an image sequence,
the feature vectors are extracted and these vectors
are assigned to symbols sets. We use vector
quantization for this implementation. We use five
actions for training and testing purposes, such as

(1) walking at a place, (2) raising the right hand, (3)
bowing, (4) sitting on the floor, and (5) running at a
place. The typical images of these actions are
shown in Fig. 6. We use 16 image sequences of
each action for training and 16 sequences of each
action for testing. For training HMM, we use all
views and for testing we use any arbitrary view.

5.2 Classification experiments

For each of the five actions to be detected, we
use the same topology of al HMM models, i.e.
five—states fully connected models. We train discrete
HMM for each action and each viewing direction with
the corresponding image sequences. Classification is
finally achieved by feeding a given (test) sequence
to all the trained HMMs and employing a likelihood
based measure to declare the action performed in
the image sequence. Table 1 shows the confusion
matrix of action recognition using HMM, where we
use human body shape features, optical flow motion
features, and combined features. Each column
represents the best match for each test sequence in
any arbitrary view direction. The first, second, and
third value represent the recognition accuracy for
shape, motion, and combined features. The average
recognition rate is 87.5% which is greater than
individual features. In the testing phase of
experiment, we found that some sequences are
misclassified, such as walking and running. These
sequences are checked manually, and it is found
that these image sequences are taken from front (0
degree) view. These situations are shown in Fig. 7.
They may occur due to the high degree of similarity
between walking and running in the image in the
front view. Moreover, all the performers are old
human and naturally their walking motion and the
running motion are almost not so different. In the
front view, the problem occurs for recognition
correctly, but in the side views, it is easier to
distinguish by both features.

Table 1. Confusion matrix. Action recognition using shape
features, motion feature and combined features.
walking |raise hand| bowing | runnin, sitting
walling |13 12[14/ 1] 1T ol ol ool 2] 3] 2/ 0i0]0
raise hand| 2| 2| 21121113/ 0{ 0/ 0] 2| 3[1]0/{0]| 0
bowing | 0/ 01 0] 0| 0] 0{15[15/16/ 01 0]/ 0]1{1|0
runping | 313031 112{0[0/0{0[12/111)113/010] 0
sitting | 11211/ 0jolol1{o[1]1]1l0[13/13/14

We also checked the recognition accuracy with
some other previous researches. In the work of Ali
et al. [6]. they used the angles of three body
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components as features to recognize seven actions
(walking, sitting, standing up, bending, getting up,
squatting, rising) from profile views. They reported
78.8% recognition rate. Masaud et al [13] reported
a recognition rate of 92.8% and use motion feature
to recognize eight actions, such as walk, run, skip,
march, line-walk, hop, side-walk, side-skip,
respectively. Yacoob and Black [15] reported a
recognition rate of 82% and recognize four actions,
such as walking, line-walking, marching, and walking
to kick, respectively. In [8], authors used the
distribution of motion over the image space, x and
y, to recognize five actions (sitting down, getting up,
raising the hand, nodding, shaking hand) and obtain

66% recognition rate.

e bl mw A

(a) Walking at a place

(b) Running at a place
Figure 7. Image sequence from front view.

In our method, it is shown that by using
combined optical flow feature and human body
silhouette feature gives better results. The important
thing is to note that we recognize human action
from any arbitrary view rather than any specific view.
We only get a recognition rate lower when the
person performs action in front view.

6. Conclusions and Future Research

In this research, we proposed a human action
recognition method from multiple views Iimage
sequences by using human body shape features and
optical flow motion features. Based on the individual
feature and combined features, a set of HMMs were
built for each action to represent each action from
different views to enable recognizing from arbitrary
views. In experiments, we compared o use only
optical flow feature, the silhouette features, and
combined features to build HMMs. The average
recognition rate .of combined features (87.5%) is
higher than the rate obtained by individual features.
This result showed that our algorithm is robust to
variations in view and duration. Although this rate
was found lower than some previous researches. But
it wouid be mentioned that we recognize action from
arbitrary views rather than any specific view. Our
future work includes the interaction of muiti-view
learning using adaptable hidden Markov model and
use complex actions.
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