• 제목/요약/키워드: computational power

검색결과 1,924건 처리시간 0.025초

A Case Study on Designing a Console Design Review System Considering Operators' Viewing Range and Anthropometric Data

  • Cha, Woo Chang;Choi, Eun Gyeong
    • 대한인간공학회지
    • /
    • 제36권5호
    • /
    • pp.373-383
    • /
    • 2017
  • Objective: The aim of this study is to introduce an operator console design review system suitable for designing and evaluating consoles based on human factor guidelines for a digitalized main control room in an advanced nuclear power plant which has a requirement for anthropometric data usage. Background: The system interface of the main control room in a nuclear power plant has been getting digitalized and consists of various consoles with many information displays. Console operators often face human-computer interactive problems due to inappropriate console design stemming from the perceptual constraints of anthropometric data usage. Method: Computational models with a process of visual perception and variables of anthropometric data are used for designing and evaluating operator consoles suitable for human system interface guidelines, which are used in an advanced nuclear power plant. Results: From the computational model and simulation application, console dimensions and a designing test module, which would be used for designing suitable consoles with safety concerns in a nuclear power plant, have been introduced. Conclusion: This case study may influence employing a suitable design concept with various anthropometric data in many areas with safety concerns and may show a feasible solution to designing and evaluating the safety console dimensions. Application: The results of this study may be used for designing a control room with the human factors requiring a safe working environment.

파워흐름유한요소법에 의한 중고주파수 영역에서 단순 평판의 진동 해석 (Analysis of Vibration of a Simple Plate In a Medium-to-High Frequency Range With Power Flow Finite Element Method)

  • 서성훈;홍석윤;길현권;허영
    • 한국전산구조공학회논문집
    • /
    • 제16권2호
    • /
    • pp.125-131
    • /
    • 2003
  • 본 논문에서는 중고주파수 영역에서 진동하는 단순평판의 진동을 해석하기 위하여 파워흐름유한요소법을 적용하였다. 파워흐름해석법에서 주어지는 진동 에너지지배방정식의 해를 구하기 위한 수치해석 도구로써 유한요소법을 활용하였다. 이러한 파워흐름유한요소법을 적용하여 중고주파수 영역에서 진동하는 단순평판의 진동 변위와 진동인텐시티 분포를 구하였다. 또한 수치해 결과를 엄밀해와 유한요소법에 의한 근사해와 비교함으로써, 파워흐름유한요소법은 중고주파수 영역에서 진동 변위 및 진동 인텐시티를 예측하기 위하여 효과적으로 적용될 수 있음을 보였다.

500MW 발전소에서 협소 공간 내 대형 덕트 설계의 최적화 (Optimization of the Design of Large Ducts with the Space Constraint in 500MW Power Plant)

  • 황우현;이경옥;조용기
    • 한국환경과학회지
    • /
    • 제18권7호
    • /
    • pp.755-765
    • /
    • 2009
  • Some sections of the exhaust system to determine the shape of the duct is to suffer the difficulties by space constraints to install new equipment of the environment post-treatment for existing operation of the power plants. In this paper the large duct in flue gas desulfurization equipments of the 500MW coal-fired power plant on the current operation is numerically analyzed from induced draft fan exit to booster up fan inlet section which is in the narrow space of the exhaust system with four times bending and is connected to emergency duct to bypass the exhaust gas on the emergency operation. The procedure and method using computational fluid dynamics are proposed to maintain the stability of the guide vane with the uniform flow and a minimum pressure loss of exhaust gas in the case of normal and emergency operation between the direction of the flow of exhaust gas duct at different.

전산유체역학을 활용한 원전용 밸브의 유량계수 산출에 대한 연구 (STUDY ON CALCULATION OF FLOW COEFFICIENT BY CFD FOR VALVE IN NUCLEAR POWER PLANT)

  • 김재형;이정희
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.54-60
    • /
    • 2016
  • The valve used in nuclear power plant must be qualified but the limitation of the test facility leads to use the numerical analysis. The flow coefficient is calculated with the consideration of the pressure, velocity and geometry. And the flow coefficient is the important physical property which is prepared using experiment or analysis by valve manufacturer. In this study, the analysis model was made according to ISA 75.02.01 and the mass flow rate and pressure drop ratio was calculated. The model of the expansion factor was applied to the simulation result and the pressure drop ratio at the start of the choked flow in the valve was found. With the simulation result, the consideration was performed that the expansion factor is the important physical property to the system engineer in addition to the flow coefficient.

축사 환기팬 후류의 풍에너지 평가 및 기류 형상의 전산유체역학 모델링 (Evaluation and CFD Modelling of Flow behind Livestock Ventilation Fan for Small-Scale Wind Power Generation)

  • 홍세운;이인복;서일환;권경석;하태환;황현섭
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.79-89
    • /
    • 2012
  • The objectives of this paper were to evaluate the wind flow behind the livestock ventilation fan for small-scale wind power generation and to make flow profiles of imaginary ventilation fan for future simulation works. The field experiments using typical 50-inch fan indicated that the wind flow behind the ventilation fan had a good possibility of power generation with its high and steady wind speeds up to a distance of 2 m. The expected electricity yield was almost 101~369 W with a small (0.8 m radius) wind turbine. The decline of ventilation fan performance caused by the obstacle was also not significant with about 4 % from a distance of 2 m. The flow profiles for the computational fluid dynamics (CFD) simulation was created by combining the direction vectors analyzed from tuft visualization test and the flow predicted by the rotating fan modeling. The flow profiles are expected to provide an efficient saving of computational time and cost to design a better wind turbine system in future works.

풍력발전단지의 후류손실 및 터빈 재배치에 관한 연구 (Wake Losses and Repositioning of Wind Turbines at Wind Farm)

  • 박근성;유기완;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제35권3호
    • /
    • pp.17-25
    • /
    • 2015
  • The main objective of this study is to predict the wind power generation at the wind farm using various wake models. Modeling of wind farm is a prerequisite for prediction of annual energy production at the wind farm. In this study, we modeled 20 MW class Seongsan wind farm which has 10 wind turbines located at the eastern part of Jeju Island. WindSim based on the computational fluid dynamics was adopted for the estimation of power generation. The power curve and thrust coefficient with meteorology file were prepared for wind farm modelling. The meteorology file was produced based on the measured data of the Korea Wind Atlas provided by Korea Institute of Energy Research. Three types of wake models such as Jensen, Larsen, and Ishihara et al. wake models were applied to investigate the wake effects. From the result, Jensen and Ishihara wake models show nearly the same value of power generation whereas the Larsen wake model shows the largest value. New positions of wind turbines are proposed to reduce the wake loss, and to increase the annual energy production of the wind farm.

타원곡선 암호시스템에서 랜덤 m-ary 방법을 사용한 전력분석 공격의 대응방법 (A Random M-ary Method-Based Countermeasure against Power Analysis Attacks on ECC)

  • 안만기;하재철;이훈재;문상재
    • 정보보호학회논문지
    • /
    • 제13권3호
    • /
    • pp.35-43
    • /
    • 2003
  • 타원곡선 암호시스템에서 스칼라 곱셈의 랜덤화는 부-채널공격 대응방법의 기본적인 개념 중의 하나이다. 본 논문에서는 랜덤 m-ary 리코딩 알고리듬에 기반한 랜덤 m-ary 방법으로 단순/차분 전력분석 공격의 대응 방법을 제안한다. 제안 방법은 표준의 m-ary 방법보다 부가적인 연산량이 요구되지만 비밀키와 독립적인 소모전력을 생성한다. 따라서 랜덤한 윈도우 사이즈를 이용한 연산 과정이 SPA/DPA 공격에 대응할 수 있으므로 제안하는 대응방법은 스마트카드의 부-채널공격에 향상된 안전성을 제공한다.

CAI 엔진 해석을 위한 multi-zone 연소 모델의 개발 (Development of a Multi-zone Combustion Model for the Analysis of CAI Engines)

  • 이경현;임재만;김용래;민경덕
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.74-80
    • /
    • 2008
  • A combustion of CAI engine is purely dominated by fuel chemical reactions. In order to simulate the combustion of CAI engine, it should be considered the effect of fuel components and chemical kinetics. So it needs enormous computational power. To overcome this problem reduced problem of needing massive computational power, chemical kinetic mechanism and multi-zone method is proposed here in this paper. A reduced chemical kinetic mechanism for a gasoline surrogate was used in this study for a CAI combustion. This gasoline surrogate was modeled as a blend of iso-octane, n-heptane, and toluene. For the analysis of CAI combustion, a multi-zone method as combustion model for a CAI engine was developed and incorporated into the computational fluid dynamics code, STAR-CD, for computing efficiency. This coupled multi-zone model can calculate 3 dimensional computational fluid dynamics and multi-zoned chemical reaction simultaneously in one time step. In other words, every computational cell interacts with the adjacent cells during the chemical reaction process. It can enhance the reality of multi-zone model. A greatly time-saving and yet still relatively accurate CAI combustion simulation model based on the above mentioned two efficient methodologies, is thus proposed.

시화조력발전소 방류 수문을 활용한 조류발전이 조력발전에 미치는 영향 (Effect of tidal current turbine using the discharge gate of Siwha tidal power plant on the tidal power generating)

  • 김영준;김용열;조용;고재명
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.236.2-236.2
    • /
    • 2010
  • The tidal current power is the power plant by installing the turbine or rotor where the tidal speed is fast. This system converting the horizontal movement to rotating energy. Tidal power turbine is needed for the dam to utilize the pressure difference. However, tidal current power using the only flow. The tidal current power was evaluated as the impact on the marine environment surrounding was less and the development of eco-friendly way. In this article, we calculated the effect of tidal current turbine on the tidal power generating by mean of CFD. With these calculated results, we checked the possibility of tidal current power using tidal power plant the discharge gate.

  • PDF

Computational Simulations of Thermoelectric Transport Properties

  • Ryu, Byungki;Oh, Min-Wook
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.273-281
    • /
    • 2016
  • This review examines computational simulations of thermoelectric properties, such as electrical conductivity, Seebeck coefficient, and thermal conductivity. With increasing computing power and the development of several efficient simulation codes for electronic structure and transport properties calculations, we can evaluate all the thermoelectric properties within the first-principles calculations with the relaxation time approximation. This review presents the basic principles of electrical and thermal transport equations and how they evaluate properties from the first-principles calculations. As a model case, this review presents results on $Bi_2Te_3$ and Si. Even though there is still an unsolved parameter such as the relaxation time, the effectiveness of the computational simulations on the transport properties will provide much help to experimental scientist researching novel thermoelectric materials.