KSII Transactions on Internet and Information Systems (TIIS)
/
v.4
no.4
/
pp.547-559
/
2010
As web-based online communities are rapidly growing, the agents in the communities need to know their measurable belief of trust for safe and successful interactions. In this paper, we propose a computational model of trust resulting from available feedbacks in online communities. The notion of trust can be defined as an aggregation of consensus given a set of past interactions. The average trust of an agent further represents the center of gravity of the distribution of its trustworthiness and untrustworthiness. Furthermore, we precisely describe the relationships among reputation, trust and average trust through concrete examples showing their computations. We apply our trust model to online social networks in order to show how trust mechanisms are involved in the rational purchasing decision-making of buyers and sellers, and we summarize our simulation results.
As Web-based online communities are rapidly growing, the agents in social groups need to know their measurable belief of trust for safe andsuccessful interactions. In this paper, we propose a computational model of trust resulting from available feedbacks in online communities. The notion of trust can be defined as an aggregation of consensus given a set of past interactions. The averagetrust of an agent further represents the center of gravity of the distribution of its trustworthiness and untrustworthiness. And then, we precisely describe the relationship between reputation, trust, and averagetrust through a concrete example of their computations. We apply our trust model to online internet settings in order to show how trust mechanisms are involved in a rational decision-making of the agents.
Journal of Information Technology Applications and Management
/
v.17
no.4
/
pp.39-56
/
2010
We are sometimes interacting with people who we know nothing and facing with the difficult task of making decisions involving risk in social network. To reduce risk, the topic of building Web of trust is receiving considerable attention in social network. The easiest approach to build Web of trust will be to ask users to represent level of trust explicitly toward another users. However, there exists sparsity issue in Web of trust which is represented explicitly by users as well as it is difficult to urge users to express their level of trustworthiness. We propose a fuzzy-based inference model for Web of trust using user behavior information in social network. According to the experiment result which is applied in Epinions.com, the proposed model show improved connectivity in resulting Web of trust as well as reduced prediction error of trustworthiness compared to existing computational model.
Proceedings of the Korea Database Society Conference
/
2010.06a
/
pp.277-287
/
2010
We are sometimes interacting with people who we know nothing and facing with the difficult task of making decisions involving risk in social network. To reduce risk, the topic of building Web of trust is receiving considerable attention in social network. The easiest approach to build Web of trust will be to ask users to represent level of trust explicitly toward another users. However, there exists sparsity issue in Web of trust which is represented explicitly by users as well as it is difficult to urge users to express their level of trustworthiness. We propose a fuzzy-based inference model for Web of trust using user behavior information in social network. According to the experiment result which is applied in Epinions.com, the proposed model show improved connectivity in resulting Web of trust as well as reduced prediction error of trustworthiness compared to existing computational model.
Journal of Information Technology Applications and Management
/
v.20
no.2
/
pp.177-191
/
2013
Social network has been expected to increase the value of social capital through online user interactions which remove geographical boundary. However, online users in social networks face challenges of assessing whether the anonymous user and his/her providing information are reliable or not because of limited experiences with a small number of users. Therefore. it is vital to provide a successful trust model which builds and maintains a web of trust. This study aims to propose a prediction method for the interpersonal trust which measures the level of trust about information provider in Facebook. To develop the prediction method. we first investigated behavioral research for trust in social science and extracted 5 antecedents of trust : lenience, ability, steadiness, intimacy, and similarity. Then we measured the antecedents from the history of interactive behavior and built prediction models using the two decision trees and a computational model. We also applied the proposed method to predict interpersonal trust between Facebook users and evaluated the prediction accuracy. The predicted trust metric has dynamic feature which can be adjusted over time according to the interaction between two users.
In this paper, an adaptive trust region method based on the conic model for unconstrained optimization problems is proposed and analyzed. We establish the global and super linear convergence results of the method. Numerical tests are reported that confirm the efficiency of the new method.
Kim, Hak-Joon;Lee, Sun-A;Lee, Kyung-Mi;Lee, Keon-Myung
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.1
/
pp.61-65
/
2006
This paper is concerned with a quantitative computational trust model which lakes into account multiple evaluation criteria and uses the recommendation from others in order to get the trust value for entities. In the proposed trust model, the trust for an entity is defined as the expectation for the entity to yield satisfactory outcomes in the given situation. Once an interaction has been made with an entity, it is assumed that outcomes are observed with respect to evaluation criteria. When the trust information is needed, the satisfaction degree, which is the probability to generate satisfactory outcomes for each evaluation criterion, is computed based on the outcome probability distributions and the entity's preference degrees on the outcomes. Then, the satisfaction degrees for evaluation criteria are aggregated into a trust value. At that time, the reputation information is also incorporated into the trust value. This paper presents in detail how the trust model works.
In the IoT environment, there is a huge amount of heterogeneous devices with limited capacity. Existing trust evaluation methods are not adequate to accommodate this requirement due to the limited storage space and computational resources. In addition, since IoT devices are mainly human operated devices, the trust evaluation should reflect the social relations among device owners. There is also a need for a mechanism that reflects the tendency of the trustor and environmental factors. In this paper, we propose an adaptable trust evaluation method for SOA-based IoT system to deal with these issues. The proposed model is designed to minimize the confidence bias and to dynamically respond to environmental changes by combining direct evaluation and indirect evaluation. It is expected that it will be possible to secure trust through quantitative evaluation by providing feedback based on social relationships.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.3
/
pp.487-499
/
2022
Machine learning such as deep learning have been widely used in recent years. Recently deep learning is performed in a trusted execution environment such as ARM TrustZone to improve security in edge devices and embedded devices with low computing resource. To mitigate this problem, we propose TPMP that efficiently uses the limited memory of TEE through DNN model partitioning. TPMP achieves high confidentiality of DNN by performing DNN models that could not be run with existing memory scheduling methods in TEE through optimized memory scheduling. TPMP required a similar amount of computational resources to previous methodologies.
In the Internet environment many interactions between many users and unknown users take place and it is usually rare to have the trust information about others. Due to the lack of trust information, entities have to take some risks in transactions with others. In this perspective, it is crucial for the entities to be equipped with functionality to accumulate and manage the trust information on other entities in order to reduce risks and uncertainty in their transactions. This paper is concerned with a quantitative computational trust model which takes into account multiple evaluation criteria and uses the recommendation from others in order to get the trust for an entity. In the proposed trust model, the trust for an entity is defined as the expectation for the entity to yield satisfactory outcomes in the given situation. Once an interaction has been made with an entity, it is assumed that outcomes are observed with respect to evaluation criteria. When the trust information is needed, the satisfaction degree, which is the probability to generate satisfactory outcomes for each evaluation criterion, is computed based on the empirical outcome outcome distributions and the entity's preference degrees on the outcomes. Then, the satisfaction degrees for evaluation criteria are aggregated into a trust value. At that time, the reputation information is also incorporated into the trust value. This paper also shows that the model could help the entities effectively choose other entities for transactions with some experiments in e-commerce.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.