• Title/Summary/Keyword: computational model

Search Result 7,148, Processing Time 0.038 seconds

Evaluation of Destratification Efficiency by Combined Effect of Adjacent Plumes through 2-Phase and 3D Hydrodynamic Analysis in a Stratified Fluid (Bubble plume의 중첩효과가 저수지 성층파괴 효율에 미치는 영향에 대한 수리동역학적 2상-3차원 평가)

  • Yum, Kyung-Taek;Park, Hee-Kyung;Ahn, Je-Young
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.219-231
    • /
    • 2004
  • The use of air diffuser system to ameliorate the reservoir by breaking stratification is now widespread. This study focuses on the hydrodynamic behavior of bubble plumes, which is the major mechanism of destratification and their combined effect of adjacent plumes on destratification efficiency. By introducing 2-phase Computational Fluid Dynamics(CFD) technique, we could suggest the optimal diffuser spacing having optimal destratification efficiency by simply analyzing the complex destratification procedures varying with the seasonal stratification intensity and bubble flow rate. Lab experiments were also carried out to verify CFD model in thermally stratified fresh water which quite differs from former researches using salts. This study showed that the mixing efficiency strongly depends on the spacing of neighboring plumes. When diffuser spacing is lower than 1.5 times the depth, the combined effect is stronger; as Plume Number(PN) is increased, the efficiency is strongly affected by spacing. If the distance is shorter than the depth of water, the efficiency increases linearly in proportion to PN. Otherwise, the efficiency increases non-linearly. These findings suggest that the combined effect should be more quantitatively taken into consideration for design and operation of air-diffuser destratification system, and recommend that the optimal destratification efficiency will be when plume number is 1000 and the spacing between neighboring diffusers is 1.5 times the depth.

A Study on the Statistical Characteristics and Numerical Hindcasts of Storm Waves in East Sea (동해 폭풍파랑의 통계적 특성과 파랑 후측모의 실험에 관한 연구)

  • Chun, Hwusub;Kang, Tae-Soon;Ahn, Kyungmo;Jeong, Weon Mu;Kim, Tae-Rim;Lee, Dong Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.2
    • /
    • pp.81-95
    • /
    • 2014
  • In the present study, the statistical analysis on the storm waves in the East Sea have been carried out, and the several storm waves were reproduced by the modified WAM as a first step for the accurate and prompt forecasting and warning against the swell waves in East Sea. According to the present study, the occurrences of the storm waves from the North were the most probable, while the waves from the Northeast were most frequently observed. It was found that the significant wave heights of storm waves from the North and Northern northeast were larger than those of storm waves from the Northeast. But due to long fetch distance, the significant wave periods of storm waves from the Northesast were longer than those of North and Northern northeast. In addition to the wave analysis, the numerical experiments for the storm waves in East Sea were carried out using the modified WAM, and three periods of storm waves in 2013 were calculated. The numerical results were well agreed with wave measurements. However the numerical simulation results in shallow water region showed lower accuracies compared to deep water, which might be due to lower resolution of wind field and bottom topography caused by large grid size, 5 minute, adopted in the present study. Overall computational efficiency of the modified WAM found to be excellent compared to original WAM. It is because the modified WAM adopted the implicit scheme, thereby the present model performed 10 time faster than original WAM in computation time.

Algorithms for Indexing and Integrating MPEG-7 Visual Descriptors (MPEG-7 시각 정보 기술자의 인덱싱 및 결합 알고리즘)

  • Song, Chi-Ill;Nang, Jong-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This paper proposes a new indexing mechanism for MPEG-7 visual descriptors, especially Dominant Color and Contour Shape descriptors, that guarantees an efficient similarity search for the multimedia database whose visual meta-data are represented with MPEG-7. Since the similarity metric used in the Dominant Color descriptor is based on Gaussian mixture model, the descriptor itself could be transform into a color histogram in which the distribution of the color values follows the Gauss distribution. Then, the transformed Dominant Color descriptor (i.e., the color histogram) is indexed in the proposed indexing mechanism. For the indexing of Contour Shape descriptor, we have used a two-pass algorithm. That is, in the first pass, since the similarity of two shapes could be roughly measured with the global parameters such as eccentricity and circularity used in Contour shape descriptor, the dissimilar image objects could be excluded with these global parameters first. Then, the similarities between the query and remaining image objects are measured with the peak parameters of Contour Shape descriptor. This two-pass approach helps to reduce the computational resources to measure the similarity of image objects using Contour Shape descriptor. This paper also proposes two integration schemes of visual descriptors for an efficient retrieval of multimedia database. The one is to use the weight of descriptor as a yardstick to determine the number of selected similar image objects with respect to that descriptor, and the other is to use the weight as the degree of importance of the descriptor in the global similarity measurement. Experimental results show that the proposed indexing and integration schemes produce a remarkable speed-up comparing to the exact similarity search, although there are some losses in the accuracy because of the approximated computation in indexing. The proposed schemes could be used to build a multimedia database represented in MPEG-7 that guarantees an efficient retrieval.

Aerodynamic Characteristics Analysis of Small Two-Stage Turbo Blower Using CFD (CFD를 이용한 소형 2단 터보블로워의 공력해석)

  • Seo, Seungjae;Ryu, Minhyoung;Cho, Leesang;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.326-335
    • /
    • 2014
  • Aerodynamic characteristics of the small two-stage turbo blower were investigated using commercial CFD tool(ANSYS CFX Ver. 14.5) in this paper. Turbo blower, which is a centrifugal type of turbomachinery, is used in various industries. It is used for application that required high static pressure rising at relatively small volumetric flow rate. In order to understand the mechanism of static pressure rising, the aerodynamic characteristics of the small two-stage turbo blower are analyzed at high rotating speed in this study. The k-${\omega}$ SST turbulence model, which is good at prediction of adverse pressure gradient flows, was applied. The CFD results of the turbo blower are validated by performance test. The static pressure rising of the turbo blower is nonlinearly increased over the first stage and the second stage. The secondary flow occurred at guide vanes, between the casing and the first impeller shroud, and the bottom of the impeller disk. As a result, It is required that whole fluid area is analyzed to predict aerodynamic characteristics of small two-stage turbo blower. and the result should be selected with considering for error from experiment and CFD.

Study of the Flush Air Data Sensing System for Subsonic and Supersonic Flows (아음속 및 초음속 유동의 플러시 대기자료 측정장치 연구)

  • Lee, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.831-840
    • /
    • 2019
  • Flush Air Data Sensing system (FADS) estimates air data states using pressure data measured at the surface of flight vehicles. The FADS system does not require intrusive probes, so it is suitable for high performance aircrafts, stealth vehicles, and hypersonic flight vehicles. In this study, calibration procedures and solution algorithms of the FADS for a sphere-cone shape vehicle are presented for the prediction of air data from subsonic to supersonic flights. Five flush pressure ports are arranged on the surface of nose section in order to measure surface pressure data. The algorithm selects the concept of separation for the prediction of flow angles and the prediction of pressure related variables, and it uses the pressure model which combines the potential flow solution for a subsonic flow with the modified Newtonian flow theory for a hypersonic flow. The CFD code which solves Euler equations is developed and used for the construction of calibration pressure data in the Mach number range of 0.5~3.0. Tests are conducted with various flight conditions for flight Mach numbers in the range of 0.6~3.0 and flow angles in the range of -10°~+10°. Air data such as angle of attack, angle of sideslip, Mach number, and freestream static pressure are predicted and their accuracies are analyzed by comparing predicted data with reference data.

Aeroelastic Tailoring of a Forward-Swept Wing Using One-dimensional Beam Analysis (1차원 보 해석을 활용한 전진익 항공기의 복합적층 날개 공력탄성학적 테일러링)

  • Choi, JaeWon;Lim, ByeongUk;Lee, SiHun;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.555-563
    • /
    • 2020
  • Foward-swept wings are known to possess superior aerodynamic performance compared to the conventional straight wings. However major concerns regarding forward-swept wings include divergence at lower airspeeds which require careful consideration at the design stage. As an endeavor to overcome such drawbacks, aeroelastic tailoring is attempted. In order to find an optimal ply sequence, recursive aeroelastic analyses is conducted and one-dimensional beam analysis coupled with simple aerodynamics is used for the improved computational efficiency and modelling convenience. The analysis used in this paper, DYMORE and analytic formula, both use one-dimensional beam model for the structure. Cross-sectional analysis for multi-cell NACA0015 airfoil section is conducted using VABS and oblique function is used for the sweep angle. Throughout the present aeroelastic tailoring, the maximum divergence speed of 290.2m/s is achieved which is increased by approximately 43% than that for the conventional ply configuration.

Study of Parallelization Methods for Software based Real-time HEVC Encoder Implementation (소프트웨어 기반 실시간 HEVC 인코더 구현을 위한 병렬화 기법에 관한 연구)

  • Ahn, Yong-Jo;Hwang, Tae-Jin;Lee, Dongkyu;Kim, Sangmin;Oh, Seoung-Jun;Sim, Dong-Gyu
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.835-849
    • /
    • 2013
  • Joint Collaborative Team on Video Coding (JCT-VC), which have founded ISO/IEC MPEG and ITU-T VCEG, has standardized High Efficiency Video Coding (HEVC). Standardization of HEVC has started with purpose of twice or more coding performance compared to H.264/AVC. However, flexible and hierarchical coding block and recursive coding structure are problems to overcome of HEVC standard. Many fast encoding algorithms for reducing computational complexity of HEVC encoder have been proposed. However, it is hard to implement a real-time HEVC encoder only with those fast encoding algorithms. In this paper, for implementation of software-based real-time HEVC encoder, data-level parallelism using SIMD instructions and CPU/GPU multi-threading methods are proposed. And we also proposed appropriate operations and functional modules to apply the proposed methods on HM 10.0 software. Evaluation of the proposed methods implemented on HM 10.0 software showed 20-30fps for $832{\times}480$ sequences and 5-10fps for $1920{\times}1080$ sequences, respectively.

The Optimization of Hybrid BCI Systems based on Blind Source Separation in Single Channel (단일 채널에서 블라인드 음원분리를 통한 하이브리드 BCI시스템 최적화)

  • Yang, Da-Lin;Nguyen, Trung-Hau;Kim, Jong-Jin;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 2018
  • In the current study, we proposed an optimized brain-computer interface (BCI) which employed blind source separation (BBS) approach to remove noises. Thus motor imagery (MI) signal and steady state visual evoked potential (SSVEP) signal were easily to be detected due to enhancement in signal-to-noise ratio (SNR). Moreover, a combination between MI and SSVEP which is typically can increase the number of commands being generated in the current BCI. To reduce the computational time as well as to bring the BCI closer to real-world applications, the current system utilizes a single-channel EEG signal. In addition, a convolutional neural network (CNN) was used as the multi-class classification model. We evaluated the performance in term of accuracy between a non-BBS+BCI and BBS+BCI. Results show that the accuracy of the BBS+BCI is achieved $16.15{\pm}5.12%$ higher than that in the non-BBS+BCI by using BBS than non-used on. Overall, the proposed BCI system demonstrate a feasibility to be applied for multi-dimensional control applications with a comparable accuracy.

Validation of a New Design of Tellurium Dioxide-Irradiated Target

  • Fllaoui, Aziz;Ghamad, Younes;Zoubir, Brahim;Ayaz, Zinel Abidine;Morabiti, Aissam El;Amayoud, Hafid;Chakir, El Mahjoub
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1273-1279
    • /
    • 2016
  • Production of iodine-131 by neutron activation of tellurium in tellurium dioxide ($TeO_2$) material requires a target that meets the safety requirements. In a radiopharmaceutical production unit, a new lid for a can was designed, which permits tight sealing of the target by using tungsten inert gaswelding. The leakage rate of all prepared targets was assessed using a helium mass spectrometer. The accepted leakage rate is ${\leq}10^{-4}mbr.L/s$, according to the approved safety report related to iodine-131 production in the TRIGA Mark II research reactor (TRIGA: Training, Research, Isotopes, General Atomics). To confirm the resistance of the new design to the irradiation conditions in the TRIGA Mark II research reactor's central thimble, a study of heat effect on the sealed targets for 7 hours in an oven was conducted and the leakage rates were evaluated. The results show that the tightness of the targets is ensured up to $600^{\circ}C$ with the appearance of deformations on lids beyond $450^{\circ}C$. The study of heat transfer through the target was conducted by adopting a one-dimensional approximation, under consideration of the three transfer modes-convection, conduction, and radiation. The quantities of heat generated by gamma and neutron heating were calculated by a validated computational model for the neutronic simulation of the TRIGA Mark II research reactor using the Monte Carlo N-Particle transport code. Using the heat transfer equations according to the three modes of heat transfer, the thermal study of I-131 production by irradiation of the target in the central thimble showed that the temperatures of materials do not exceed the corresponding melting points. To validate this new design, several targets have been irradiated in the central thimble according to a preplanned irradiation program, going from4 hours of irradiation at a power level of 0.5MWup to 35 hours (7 h/d for 5 days a week) at 1.5MW. The results showthat the irradiated targets are tight because no iodine-131 was released in the atmosphere of the reactor building and in the reactor cooling water of the primary circuit.

Natural Convection in a Water Tank with a Heated Horizontal Plate Facing Downward (아래로 향한 수평가열판이 있는 수조에서의 자연대류)

  • Yang, Sun-Kyu;Chung, Moon-Ki;Helmut Hoffmann
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.301-316
    • /
    • 1995
  • experimental and computational studies ore carried out to investigate the natural convection of the single phase flow in a tank with a heated horizontal plate facing downward. This is a simplified model for investigations of the influence of a core melt at the bottom of a reactor vessel on the thermal hydraulic behavior in a oater filled cavity surrounding the vessel. In this case the vessel is simulated by a hexahedron insulated box with a heated plate Horizontally mounted at the bottom of the box. The box with the heated plate is installed in a water filled hexahedron tank. Coolers are immersed in the U-type water volume between the box and the tank. Although the multicomponent flows exist more probably below the heated plate in reality, present study concentrates on the single phase flow in a first step prior to investigating the complicated multicomponent thermal hydraulic phenomena. In the present study, in order to get a better understanding for the natural convection characteristics below the heated plate, the velocity and temperature are measured by LDA(Laser Doppler Anemometry) and thermocouples, respectively. And How fields are visualized by taking pictures of the How region with suspended particles. The results show the occurrence of a very effective circulation of the fluid in the whole How area as the heater and coolers are put into operation. In the remote region below the heated plate the new is nearly stagnant, and a remarkable temperature stratification can be observed with very thin thermal boundary. Analytical predictions using the FLUTAN code show a reasonable matching of the measured velocity fields.

  • PDF