• Title/Summary/Keyword: computational investigation

Search Result 719, Processing Time 0.034 seconds

Linearity and Nonlinearity of Rotor System Analysis (로터 시스템 회전운동 선형 및 비선형성)

  • Yun, Seong-Ho;Ren, Li-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.190-196
    • /
    • 2008
  • The dynamical rotor system is investigated through the derivation and formulations of the dynamic equation of the rotating system in terms of both inertial and fixed frame of the system as well as quaternion. The investigation is aimed at analyzing the dynamical rotating system precession speed. The resulting equations of motion consist of the consistent mass matrix and gyroscopic matrix. The formulation shows its features and difference between its linearity and nonlinearity.

  • PDF

Theoretical Investigation of 2DOF Vibrating System and Its Application to Dynamic Vibration Absorber (2자유도 진동시스템에 관한 이론적 고찰 및 진동흡진기로의 응용)

  • Jang, Seon-Jun;Brennan, M.J.;Rustighi, E.;Jung, Hyung-Jo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.125-129
    • /
    • 2009
  • 본 연구에서는 동강성법을 이용하여 2자유도 진동시스템을 모델링하였다. 등가 모델을 구성한 후 Inertance의 크기에 따라 변화되는 시스템의 특성을 규명하였다. 2자유도 진동 시스템을 단일 모우드 소거에 적용할 경우 해석적인 설계 방법론을 1) 감쇠가 없는 경우 2) 1개의 감쇠기를 갖는 경우로 나누어 제시하였다.

  • PDF

Seismic Analysis of Liquid Storage Structures sing Eulerian Formulation (Eulerian 기법을 이용한 유체저장구조물의 지진해석)

  • 윤정방;김재민;김영석;전영선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.43-48
    • /
    • 1991
  • In this paper the liquid sloshing effects in rectangular liquid stroage structures under earthquake loadings are studied. The study focuses on the investigation of the effect of the flexibility of the stroage wall. The storage structure is modelled using beam elements. The motion of the liquid is expressed by the Laplace equation. The equation of motion is formulated including the coupling between the wall motion and the sloshing motion. Seismic analyses have been carried out utilizing the response spectra method.

  • PDF

Analysis of Wind Environments for Siting a Wind Farm (풍력발전 단지조성을 위한 바람환경 분석)

  • 김현구;최재우;손정봉;정우식;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.745-756
    • /
    • 2003
  • An analysis of wind environments using computational fluid dynamics and an evaluation of wind resources using measurement data obtained from meteorological observation sites at Homi-Cape, Pohang have been carrid out for siting a wind farm. It was shown that a numerical simulation using computational fluid dynamics would provide reliable wind resource map in complex terrain with land-sea breeze condition. As a result of this investigation, Homi-Cape wind farm with 11.25 ㎿ capacity has been designed for maximum power generation and 25.7 GWh electricity production is predicted.

A Computational Model on Shock-Vortex Interaction and Acoustic Radiation (충격파-와동 간섭 및 음향 방사에 대한 수치 모델)

  • Chang Se-Myong;Lee Soogab;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.45-50
    • /
    • 2000
  • We study a conceptual numerical model on shock-vortex interaction setting an impulsive shock in a compressible vertex. Navier-Stokes equations are solved for the investigation of interactive structure and acoustic wave propagation. The rotationally symmetric vortex enforces two compression-expansion pairs resultantly forming a quadrupolar shape. These compressive and expansive waves cylindrically propagate to the far field and turn to acoustic waves. Using a fine uniform Cartesian grid system and a TVD-high resolution method, the flow data irl: precisely obtained to extend our interest to the sound source.

  • PDF

The Optimum Design of Reinforced Concrete Cylindrical Shell Tanks (철근콘크리트 원통 SHELL TANK 에 관한 최적설계)

  • Choi, Yeal;Kang, Moon-Myung;Pulmano, Victor. A.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.61-66
    • /
    • 1992
  • The present paper deals with the optimum design of reinforced concrete cylindrical shell tanks in according to ACI 318-89 code. The purpose of this investigation is to find the optimum values of the steel ratio and the effective thickness of reinforced concrete cylindrical shell tanks. The analysts is carried out using a simple computer programming, SMAP(segmented matrix analysis package). The optimization is carried out using GINO programming. Optimum results for cylindrical shell tanks with uniform, stepwise and piecewise linealy varying thicknesses are presented.

  • PDF

Wind Tunnel Investigation of Fluctuating Pressure inside Building (풍하중에 의한 건물내부 압력의 동적변화에 관한 연구)

  • Kyoung-Hoon Rhee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.63-68
    • /
    • 1990
  • The nature of fluctuating air pressure inside building was studied by testing a building model in a wind tunnel. The model has a single room and a sin81e window opening. Various opening conditions were tested in both laminar uniform wind and turbulent boundary-layer wind. The RMS and the spectra of the fluctuating internal pressure were measured. The test results support a recent theory which predicts the behavior of internal pressure under high wind based on aerodynamic analysis.

  • PDF

Beffeting Analysis of Long Span Cable-stayed Bridge using PCCAP (PCCAP을 이용한 장대 사장교의 버페팅 해석)

  • 유원진;이석용;남효승;이완수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.202-208
    • /
    • 2003
  • In this study, a time domain analysis is presented for investigation on the buffeting response of cable-stayed bridge during both erection and completion stages. The main span length and width of deck are 520 m and 15.1m, each. Since the ratio of span over width is 34.44, aerodynamic stability of the bridge during erection is expected to dominate the safety of the bridge in construction stage. Several conclusions regarding different construction stages and temporary wind cables are obtained.

  • PDF

Characteristics of Near Field Earthquakes and its effect on Seismic demands (Near Field 지진의 특징과 구조응답에 대한 영향)

  • 배미혜;권오성;한상환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.208-213
    • /
    • 2002
  • Near field ground motions contain distinct, large amplitude pulses in both velocity and displacement. This paper presents an investigation on the characteristics of near filed earthquakes and their effects on seismic demands. For this purpose 20 sets of near field ground motion and 20 sets of far filed ground motion are compared with respect to Linear Elastic Response Spectrum(LERS), Response Modification Factor(R), Inelastic Response Spectrum(IRS), and performance point of Capacity Spectum Method(CSM).

  • PDF

A Computational Study on the Pressure Loss of Intake System for the Combat Vehicle (전투차량 흡기시스템의 압력손실에 관한 수치적 연구)

  • Moon, Seong-Mok;An, Su-Hong;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.25-31
    • /
    • 2012
  • A computational study on the improvement of the pressure loss of intake system, which is located at engine manifold of the combat vehicle, has been conducted using a finite-volume-based, Reynolds-Averaged Navier-Stokes (RANS) solver. The computational result of the pressure loss through the air cleaner is in good agreement with equivalent experimental data. A parametric study was done for improving of the pressure loss of intake system over the baseline case. The effects of five primary parameters such as the height of inlet, the width of interconnection pipe, the shape of drain chamber and the diameter of filter housing were considered in this study. Consequently, this computational investigation can contribute to finding an optimal guideline for the idea of improvement in the pressure loss of intake system.