• 제목/요약/키워드: computational geometry

검색결과 838건 처리시간 0.028초

NUMERICAL SIMULATIONS FOR THE CONTRACTION FLOW USING GRID GENERATION

  • Salem, S.A.
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.383-405
    • /
    • 2004
  • We study the incomprssible Navier Stokes equations for the flow inside contraction geometry. The governing equations are expressed in the vorticity-stream function formulations. A rectangular computational domain is arised by elliptic grid generation technique. The numerical solution is based on a technique of automatic numerical generation of acurvilinear coordinate system by transforming the governing equation into computational plane. The transformed equations are approximated using central differences and solved simultaneously by successive over relaxation iteration. The time dependent of the vorticity equation solved by using explicit marching procedure. We will apply the technique on several irregular-shapes.

균질재료와 벌칙인자를 이용한 위상 최적설계 (Topology Optimization Using Homogenized Material and Penalty Factor)

  • 임오강;이진식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 1998
  • Optimization problems may be devided into geometry optimization problems and topology optimization problems. In this paper, a method using tile equivalent material properties prediction techniques of a particulate-reinforced composites is proposed for the topology optimization. This method makes use of penalty factor in order that regions with intermediate value of design variables can be penalized. The computational results being obtained from PLBA algorithm of some values of penalty factor are presented.

  • PDF

대공간 건축물 골조물량 최적화를 위한 파라메트릭 설계 프로세스 (Parametric Design Process for Structural Quantity Optimization of Spatial Building Structures)

  • 최현철;이시은;김치경
    • 한국전산구조공학회논문집
    • /
    • 제30권2호
    • /
    • pp.103-110
    • /
    • 2017
  • 본 논문에서는 StrAuto를 이용하여 구조물의 형상 변경을 통한 대안을 생성하고, 이에 대한 최적화를 수행하는 과정을 상세하게 다루었다. 비정형 대공간 전시장 구조물을 대상으로 전체 형상을 파라메트릭하게 디자인하고, 가장 폭이 넓은 경간의 구조 형상을 변경하면서 물량 변화를 관측하여 최적안을 도출하였다. 기존 연구들에서는 형상 변경의 제약 때문에 대부분 단면과 물성을 통한 최적화를 수행하는데 그쳤으나, 본 연구에서는 형상 변경이 가능한 부분을 찾아내어 StrAuto의 가장 핵심적인 능력인 형상 변경을 통한 최적화를 수행했다는 점에서 중요한 의미를 지닌다. 형상 변경으로 충분한 여유를 확보하고 단면 최적화로 물량을 줄이는 프로세스를 통해, 대공간 구조물의 일부만을 대상으로 하면서도 전체 물량의 11.7%를 줄일 수 있었다.

Parametric surface and properties defined on parallelogrammic domain

  • Fan, Shuqian;Zou, Jinsong;Shi, Mingquan
    • Journal of Computational Design and Engineering
    • /
    • 제1권1호
    • /
    • pp.27-36
    • /
    • 2014
  • Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufacturability (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multiaxis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multiaxis freeform milling also need to be solved in a further study.

맞춤형 인공관절 설계를 위한 인체 고관절의 3차원 형상 정보 추출 (Extracting 3D Geometry Parameters of Hip Joint for Designing a Custom-Made Hip Implant)

  • 서정우;전용태
    • 한국CDE학회논문집
    • /
    • 제13권3호
    • /
    • pp.200-208
    • /
    • 2008
  • Total Hip Replacement(THR) is a surgical procedure that replaces a diseased hip joint with a prosthesis. A plastic or metal cup forms the socket, and the head of the femur is replaced by a metal ball on a stem placed inside the femur. Due to the various types and shapes of human hip joint of every individual, a selected commercial implant sometimes may not be the best-fit to a patient, or it cannot be applied because of its discrepancy. Hence extracting geometry parameters of hip joint is one of the most crucial processes in designing custom-made implants. This paper describes the framework of a methodology to extract the geometric parameters of the hip joint. The parameters include anatomical axis, femoral head, head offset length, femoral neck, neck shaft angle, anteversion, acetabulum, and canal flare index. The proposed system automatically recommends the size and shape of a custom-made hip implant with respect to the patient's individual anatomy from 3D models of hip structures. The proposed procedure creating these custom-made implants with some typical examples is precisely presented and discussed in this paper.

건축부재 형상정보 교환을 위한 개방형BIM 기반의 매핑 시스템 개발 (OpenBIM-based Mapping System Development for Geometry Information Exchange of Architectural Components)

  • 박승화;김인한;이지아
    • 한국CDE학회논문집
    • /
    • 제19권2호
    • /
    • pp.182-190
    • /
    • 2014
  • Parametric modeling is one of BIM's characteristics and BIM have being utilized for constructability analysis, energy efficiency analysis, and so on in diverse construction field. However, parametric information's interoperation is not solved until now because different BIM tools have specific algorithm and methods to generate geometric information. To solve the problem, previous research suggested IFC-XML methodology. In this paper, authors studied connections between IFC-XML structure and script-based modeling commends to make libraries in commercial BIM tools such as ArchiCAD$^{TM}$ and Digital Project$^{TM}$. In addition, they made commends mapping tables to exchange geometry information of architectural components. Moreover, mapping system was developed to certify the mapping tables which is classified modeling commends. Finally, translated architectural component model was confirmed using exchanged geometry information in browser.

엇갈림형 스크류 채널 내부의 스톡스 유동과 혼합특성 해석 (Analysis of the Stokes Flow and Stirring Characteristics in a Staggered Screw Channel)

  • 서용권
    • 한국전산유체공학회지
    • /
    • 제9권4호
    • /
    • pp.55-63
    • /
    • 2004
  • The three-dimensional Stokes flow within a staggered screw channel is obtained by using a finite volume method. The geometry is intended to mimic the single screw extruder having staggered arrangement of flights. The flow solution is then subjected to the analysis of the stirring performance. In the analysis of the stirring performance, the stretching-mapping method developed by the author is employed for calculating the materials' stretching exponents, which are to be used in quantification of the mixing effect. The numerical results Indicate that the staggered geometry gives indeed far much better stirring-performance than the standard (nonstaggered) flight geometry. It was also shown that care must be given to the selection of the basis planes for evaluating the local stretching rate, and it turns out that the best method (H-method) has its basis plane just on the half way between the past and future evolution of fluid particles subjected to the defromation. In evaluating the stretching exponent, the expansion ratio must be considered which is one of the characteristic differences of the actual three-dimensional flows from the two-dimensionmal counterparts. The larger axial pressure-difference causes in general the smaller stirring performance while the flow rate is increased. The smaller channel length also increases the stirring performance.

실제 혈관 형상 및 혈액 특성을 고려한 경동맥 내 혈액 유동에 대한 수치해석 연구 (A NUMERICAL ANALYSIS ON BLOOD FLOOD FLOW INSIDE A CAROTID ARTERY WITH THE PATIENT SPECIFIC ARTERIAL GEOMETRY AND BLOOD RHEOLOGY DATA)

  • 이상혁;정슬기;허남건;조영일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.224-227
    • /
    • 2010
  • In the present study, the characteristics of blood flow inside a carotid artery numerically investigated with shear rate specific blood viscosity. To simulate the blood flow with a patient-specific arterial geometry, the geometry of a carotid artery was constructed from 2D rain MRA data. The measured data of blood flow velocity at the common carotid artery were used as boundary conditions of the simulation. For the blood rheology data to be used in the simulation, the patient specific blood viscosity over the whole ranges of shear rate was obtained using $BioVisco^{TM}$. From the numerical results of the blood flow in the carotid artery, the increase of blood viscosity and the decrease of wall shear stress could be found in the carotid bifurcated region, more specifically at the post-plaque dilated region. These characteristics of blood viscosity and wall shear stress can be used more precisely and efficiently to predict the region vulnerable to plaque growht or thrombosis on top of the plaque.

  • PDF

서로 다른 프리미티브 집합을 사용하는 CAD 시스템 사이에 선박 의장 설계 데이터의 교환 (Ship Outfitting Design Data Exchange between CAD Systems Using Different Primitive Set)

  • 이승훈;한순흥
    • 한국CDE학회논문집
    • /
    • 제18권3호
    • /
    • pp.234-242
    • /
    • 2013
  • Different CAD systems are used in ship outfitting design on different usage and purpose. Therefore, data exchanges between CAD systems are required from different formats. For data exchange, boundary representation standard formats such as IGES and ISO 10303 (STEP) are widely used. However, they present only B-rep representation. Because of different CAD systems have their own geometry format, data exchanges with design intend are difficult. Especially, Tribon and PDMS use primitives for express their geometry in ship outfitting design. However, Tribon primitives are represented their parameter by values that are non-parametric. Therefore, data size of catalogue library is bigger than different CAD system using parametric primitive representation. And that system has difficulty on data reprocessing. To solve that problem, we discuss about shape DB which contains design parameters of primitive for exchange Tribon primitives. And geometry data exchange between Tribon and Shape Database that defines based on PDMS scheme are specified using primitive mapping that can represent design intend.

저속익형의 공기역학적 성능예측의 한 방법 (A method for predicting the aerodynamic performance of low-speed airfoils)

  • 유능수
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.240-252
    • /
    • 1998
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the low speed airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid compressible flow analysis. The Goradia integral method is adopted for the boundary layer analysis of the laminar and turbulent flows. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. The analysis of the separated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered by expressing its geometry using the formula of Summey and Smith when no separation occurs. The computational efficiency is verified by comparing the computational results with experimental data and by the shorter execution time.