Abstract
The three-dimensional Stokes flow within a staggered screw channel is obtained by using a finite volume method. The geometry is intended to mimic the single screw extruder having staggered arrangement of flights. The flow solution is then subjected to the analysis of the stirring performance. In the analysis of the stirring performance, the stretching-mapping method developed by the author is employed for calculating the materials' stretching exponents, which are to be used in quantification of the mixing effect. The numerical results Indicate that the staggered geometry gives indeed far much better stirring-performance than the standard (nonstaggered) flight geometry. It was also shown that care must be given to the selection of the basis planes for evaluating the local stretching rate, and it turns out that the best method (H-method) has its basis plane just on the half way between the past and future evolution of fluid particles subjected to the defromation. In evaluating the stretching exponent, the expansion ratio must be considered which is one of the characteristic differences of the actual three-dimensional flows from the two-dimensionmal counterparts. The larger axial pressure-difference causes in general the smaller stirring performance while the flow rate is increased. The smaller channel length also increases the stirring performance.