• Title/Summary/Keyword: computational fluid flow analysis

Search Result 1,279, Processing Time 0.026 seconds

Application of CFD-VOF Model to Autonomous Microfluidic Capillary System (마이크로 모세관 유동 해석을 위한 CFD-VOF 모텔 응용)

  • Jeong J.H.;Im Y.H.;Han S.P.;Suk J.W.;Kim Y.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.224-229
    • /
    • 2004
  • The objective of this work is not only to perform feasibility studies on the CFD (computational fluid dynamics) analysis for the capillary system design but also to provide an enhanced understanding of the autonomous capillary flow. The capillary flow is evaluated by means of the commercial CFD software of FLUENT, which includes the VOF (volume-of-fluid) model for multiphase flow analysis. The effect of wall adhesion at fluid interfaces in contact with rigid boundaries is considered in terms of static contact angle. Feasibility studies are first performed, including mesh-resolution influence on pressure profile, which has a sudden increase at the liquid/gas interface. Then we perform both 2D and 3D simulations and examine the transient nature of the capillary flow. Analytical solutions are also derived for simple cases and compared with numerical results. Through this work, essential information on the capillary system design is brought out. Our efforts and initial success in numerical description of the microfluidic capillary flows enhance the fundamental understanding of the autonomous capillary flow and will eventually pave the road for full-scale, computer-aided design of microfluidic networks.

  • PDF

Vibraiton and Power Flow Analysis for the Branched Piping System by Wave Approach (파동접근법을 이용한 분기된 배관계의 진동 및 파워흐름해석)

  • Koo, Gyeong-Hoe;Park, Yun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1225-1232
    • /
    • 1996
  • In this paper the vibration and power flow analysis for the branched piping system conveying fluid are performed by wave approach. The uniform straight pipe element conveying fluid is formulated using the dynamic stiffness matrix by wave approach. The branched piping system conveying fluid can be easily formulated with considering of simple assumptions of displacements at the junction and continuity conditions of the pipe internal flow. The dynamic stiffness matrix for each uniform straight pipe element can be assembled by using the global assembly technique using in conventional finite element method. The computational method proposed in this paper can easily calculate the forced responses and power flow of the branched piping system conveying fluid regardless of finite element size and modal properties.

Structural Analysis of RIROB(Reactor Inspection Robot) (원자로용 수중탐상기의 구조해석)

  • 권영주;최석호;김재희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • This paper presents the structural analysis of RIROB(Reactor Inspection Robot). Actually, several analyses such as kinetodynamics analysis, fluid mechanics analysis and structural mechanics analysis etc. should be carried out in the design of RIROB. These analyses are executed through the use of com-puter aided engineering(CAE) systems. The kinetodynamics analysis is carried out using a simple fluid dynamic analysis model for the water flow over the sensor support surface instead of difficult fluid mechanics analysis. Simultaneously the structural mechanics analysis is carried out to obtain the mini-mum thickness of the RIROB housing. The minimum thickness of the RIROB housing is evaluated to be 1.0 ㎝ for the safe design of RIROB. The kinetodynamics analysis of RIROB is performed using ADAMS and the static structural mechanics analysis of RIROB is performed using NISA.

Numerical Analysis of Flow around Rectangular Cylinders with Various Side Ratios

  • Rokugou Akira;Okajima Atsushi;Kamiyama Kohji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.36-37
    • /
    • 2003
  • Three-dimensional numerical analysis of the flow around rectangular cylinders with various side ratios, D/H, from 0.2 to 2.0 is carried out for Reynolds number of 1000 by using multi-directional finite difference method in multi-grid. The predicted results are well compared with the experimental data. It is found that fluid dynamics characteristics alternate between high pressure mode. and low pressure mode of the base pressure for rectangular cylinder of D/H=0.2-0.6.

  • PDF

Three-Dimensional Noise Analysis of an Axial-Flow Fan using Computational Aero-Acoustics (공력음향학을 이용한 축류홴의 삼차원 소음 해석)

  • Kim, Joo-Hyung;Kim, Jin-Hyuk;Shin, Seungyeol;Kim, Kwang-Yong;Lee, Seungbae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • This paper presents a systematic procedure for three-dimensional noise analysis of an axial-flow fan by using computational aero-acoustics based on Ffowcs Williams-Hawkings equation. Flow-fields of a basic fan model are simulated by solving three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations using the commercial code ANSYS CFX 11.0. Starting with steady flow results, unsteady flow analysis is performed to extract the fluctuating pressures in the time domain at specified local points on the blade surface of the axial flow fan. The perturbed density wave by rotating blades reaches at the observer position, which is simulated by an in-house noise prediction software based on Ffowcs Williams-Hawkings equation. The detailed far-field noise signatures from the axial-flow fan are analyzed in terms of source types, field characteristics, and interpolation schemes.

FLUID-STRUCTURE INTERACTION ANALYSIS FOR VORTEX-INDUCED VIBRATION OF CIRCULAR CYLINDER (유체-구조 연성해석을 통한 원주의 와유기 진동 해석)

  • Kim, S.H.;Ahn, H.T.;Ryue, J.S.;Shin, H.K.;Kwon, O.J.;Seo, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Fluid-Structure Interaction analysis of a circular cylinder surrounded by incompressible turbulent flow is presented. The fluid flow is modeled by incompressible Navier-Stokes equations in conjunction with large-eddy simulation for turbulent vortical flows. The circular cylinder is modeled as elastic continuum described by elasto-dynamic equation of motion. Finite element method based approach is utilized for unified formulation of fluid-structure interaction analysis. The magnitude and frequency of structural response is analysed in comparison to the driving fluid forces.

A NUMERICAL ANALYSIS ON ELECTROHYDRODYNAMICS (EHD) OF THE FLOW AND THE COLLECTION MECHANISMS INSIDE AN ELECTROSTATIC PRECIPITATOR WITH A SPIRAL SPIKE ELECTRODE (나선 스파이크 전기집진기 내 유동 및 집진 현상에 대한 전기수력학 수치해석 연구)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.58-65
    • /
    • 2008
  • In the present study, a numerical analysis on electrohydrodynamics (EHD) of the flow and the collection mechanisms inside a electrostatic precipitator with a spiral spike electrode were investigated. The phenomena of the electrostatic precipitator include complex interactions between the electric field, the fluid flow and the particle motion. To validate the numerical method, the numerical computation for the electric field of a simple wire-pipe type electrostatic system having an analytic solution were performed. Using this numerical method, the electric field of the spiked electrostatic precipitator was simulated. And the fluid flow and the particle motion inside the spiked electrostatic precipitator were numerically analyzed.

NUMERICAL ANALYSIS OF FLOW AROUND RECTANGULAR CYLINDERS WITH VARIOUS SIDE RATIOS

  • Rokugou Akira;Okajima Atsushi;Gutierrez Isaac
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Three-dimensional numerical analysis of the flow around rectangular cylinders with various side ratios, D/H, from 0.2 to 2.0, was carried out for Reynolds number of 10³ by using a multi-directional finite difference method on a regular-arranged multi-grid. The predicted results are in good agreement with the experimental data. It is found that fluid dynamic characteristics of rectangular cylinders alternate between the high-pressure mode and the low-pressure mode of the base pressure for D/H=0.2-0.6. We show that this phenomenon is induced by the change of the flow pattern around rectangular cylinders.

A Study on Internal Flow of Mixing Tank by CFD (CFD를 이용한 가향 탱크 내부 유동에 관한 연구)

  • Chung, Han-Joo;Cho, Sung-Eel;Yang, Jin-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.32 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • In the chemical, mineral and electronics, mechanically stirred tanks are widely used for complex liquid mixing processes. The paper present results from a computational fluid dynamics (CFD) model for the mixing tank in casing process. We used CFD software, FLUENT(Fluent, Inc, Lebanon, NH, version 6.2). A species transport model was used to model the problem. The flow patterns in a mixing tank, 1.6 m in diameter and 2.0 m in height, were studied using CFD. Numerical analysis results show that improved mixing tank was reduced low speed flow region and turbulent region in internal flow of mixing tank.

Prediction of Non-Contact-Type Seal Leakage Using CFD (CFD를 사용한 터보기계 비접촉식 실의 누설량 예측)

  • Ha Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.3 s.36
    • /
    • pp.14-21
    • /
    • 2006
  • Leakage reduction through annular type seals of turbomachinery is necessary for enhancing their efficiency and the precise prediction method of seal leakage is needed. The analysis based on Bulk-flow concept has been mainly used in predicting seal leakage. However, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved for improving the prediction of seal leakage. FLUENT 6 which is commercial CFD(Computational Fluid Dynamics) code based on FVM(Finite Volume Method) and SIMPLE algorism has been used to analyze leakage of various non-contact-type seals in this presentation. Comparing with the results of Bulk-flow model analysis and experiment, the result of CFD analysis shows good agreement with that of existing theoretical analysis for the incompressible grooved seal and compressive plain and staggered seal. The CFD analysis also shows improvement on the leakage prediction of the incompressible plain seal and compressive see-through-type labyrinth seal.